Previous CloneSet | Next CloneSet | Back to Main Report |
Clone Mass | Clones in CloneSet | Parameter Count | Clone Similarity | Syntax Category [Sequence Length] |
---|---|---|---|---|
12 | 2 | 4 | 0.952 | block |
Clone Abstraction | Parameter Bindings |
Clone Instance (Click to see clone) | Line Count | Source Line | Source File |
---|---|---|---|
1 | 12 | 324 | Bio/MarkovModel.py |
2 | 12 | 340 | Bio/MarkovModel.py |
| ||||
k = outputs[t-1] for j in range(N): # The probability of the state is the sum of the # transitions from all the states from time t-1. lprob = LOG0 for i in range(N): lp = matrix[i][t-1]+lp_transition[i][j]+lp_emission[i][k] lprob = _logadd(lprob,lp) matrix[j][t] = lprob |
| ||||
k = outputs[t] for i in range(N): # The probability of the state is the sum of the # transitions from all the states from time t+1. lprob = LOG0 for j in range(N): lp = matrix[j][t+1]+lp_transition[i][j]+lp_emission[i][k] lprob = _logadd(lprob,lp) matrix[i][t] = lprob |
| |||
k = outputs[ [[#variable72eb4c80]]] for [[#variable72eb4c00]]in range(N): # The probability of the state is the sum of the # transitions from all the states from time t+1. # transitions from all the states from time t-1. lprob = LOG0 for [[#variable72eb4ba0]]in range(N): lp = matrix[ [[#variable72eb4ba0]]][ [[#variable72eb4b40]]]+lp_transition[i][j]+lp_emission[i][k] lprob = _logadd(lprob,lp) matrix[ [[#variable72eb4c00]]][t] = lprob |
CloneAbstraction |
Parameter Index | Clone Instance | Parameter Name | Value |
---|---|---|---|
1 | 1 | [[#72eb4c80]] | t |
1 | 2 | [[#72eb4c80]] | t-1 |
2 | 1 | [[#72eb4c00]] | i |
2 | 2 | [[#72eb4c00]] | j |
3 | 1 | [[#72eb4ba0]] | j |
3 | 2 | [[#72eb4ba0]] | i |
4 | 1 | [[#72eb4b40]] | t+1 |
4 | 2 | [[#72eb4b40]] | t-1 |