Previous CloneSet | Next CloneSet | Back to Main Report |
Clone Mass | Clones in CloneSet | Parameter Count | Clone Similarity | Syntax Category [Sequence Length] |
---|---|---|---|---|
17 | 2 | 0 | 1.000 | stmt_list[2] |
Clone Abstraction | Parameter Bindings |
Clone Instance (Click to see clone) | Line Count | Source Line | Source File |
---|---|---|---|
1 | 16 | 127 | Bio/NeuralNetwork/BackPropagation/Layer.py |
2 | 17 | 219 | Bio/NeuralNetwork/BackPropagation/Layer.py |
| ||||
# first backpropogate to the next layers next_errors = self._next_layer.backpropagate(outputs,learning_rate,momentum) for this_node in self.nodes: for next_node in self._next_layer.nodes: error_deriv = (next_errors[next_node]*self.values[this_node]) delta = (learning_rate*error_deriv+momentum*self.weight_changes[(this_node,next_node)]) # apply the change to the weight self.weights[(this_node,next_node)]+=delta # remember the weight change for next time self.weight_changes[(this_node,next_node)] = delta |
| ||||
# first backpropogate to the next layers next_errors = self._next_layer.backpropagate(outputs,learning_rate,momentum) # --- update the weights for this_node in self.nodes: for next_node in self._next_layer.nodes: error_deriv = (next_errors[next_node]*self.values[this_node]) delta = (learning_rate*error_deriv+momentum*self.weight_changes[(this_node,next_node)]) # apply the change to the weight self.weights[(this_node,next_node)]+=delta # remember the weight change for next time self.weight_changes[(this_node,next_node)] = delta # --- calculate error terms |
| |||
# first backpropogate to the next layers next_errors = self._next_layer.backpropagate(outputs,learning_rate,momentum) # --- update the weights for this_node in self.nodes: for next_node in self._next_layer.nodes: error_deriv = (next_errors[next_node]*self.values[this_node]) delta = (learning_rate*error_deriv+momentum*self.weight_changes[(this_node,next_node)]) # apply the change to the weight self.weights[(this_node,next_node)]+=delta # remember the weight change for next time self.weight_changes[(this_node,next_node)] = delta # --- calculate error terms |
CloneAbstraction |
Parameter Index | Clone Instance | Parameter Name | Value |
---|---|---|---|
None |