Previous CloneSet | Next CloneSet | Back to Main Report |
Clone Mass | Clones in CloneSet | Parameter Count | Clone Similarity | Syntax Category [Sequence Length] |
---|---|---|---|---|
9 | 2 | 3 | 0.972 | stmt_list[4] |
Clone Abstraction | Parameter Bindings |
Clone Instance (Click to see clone) | Line Count | Source Line | Source File |
---|---|---|---|
1 | 9 | 293 | Bio/NeuralNetwork/Gene/Schema.py |
2 | 9 | 353 | Bio/NeuralNetwork/Gene/Schema.py |
| ||||
# convert the genome into a string seq_motif = genome.toseq( ) motif = seq_motif.data # get the counts in the positive examples num_pos = 0 for seq_record in self._pos_seqs: cur_counts = self._schema_eval.num_matches(motif,seq_record.seq.data) num_pos+=cur_counts # get the counts in the negative examples |
| ||||
# convert the genome into a string seq_motif = genome.toseq( ) motif = seq_motif.data # find the number of times the genome matches num_times = 0 for seq_record in self._records: cur_counts = self._evaluator.num_matches(motif,seq_record.seq.data) num_times+=cur_counts |
| |||
# convert the genome into a string seq_motif = genome.toseq( ) motif = seq_motif.data [[#variable77b729e0]]= 0 for seq_record in self. [[#variable2e7c77e0]]: cur_counts = self. [[#variable77b72a00]].num_matches(motif,seq_record.seq.data) [[#variable77b729e0]]+=cur_counts # get the counts in the negative examples |
CloneAbstraction |
Parameter Index | Clone Instance | Parameter Name | Value |
---|---|---|---|
1 | 1 | [[#77b729e0]] | # find the number of times the genome matches num_times |
1 | 2 | [[#77b729e0]] | # get the counts in the positive examples num_pos |
2 | 1 | [[#2e7c77e0]] | _records |
2 | 2 | [[#2e7c77e0]] | _pos_seqs |
3 | 1 | [[#77b72a00]] | _evaluator |
3 | 2 | [[#77b72a00]] | _schema_eval |