

Parallel Support for Source Code Analysis and Modification

Ira D. Baxter
Semantic Designs, Inc.

idbaxter@semdesigns.com

Abstract

Tools that analyze and enhance large-scale software
systems using symbolic reasoning are computationally
expensive, and yet processors are cheap. We believe that
enabling tools with parallel foundations will lead to
qualitatively more useful tools. We have implemented a
large-scale industrial-strength program transformation
system, the DMS Software Reengineering Toolkit, entirely
in PARLANSE, a new parallel language. PARLANSE
provides support for irregular fine-grain parallelism with
zero-cost exception handling. This paper sketches the
motivation for PARLANSE, its parallelism support and how
it is used in a number of DMS-based applications,
including parallel rewriting and attribute evaluation.

1 Introduction: Symbolic Computation
 and Parallelism

Automation is the key to productivity gains in software
engineering. Such automation seems best obtained by
enabling tools to reason collectively and deeply about the
problem domain concepts, software design and code of
application software. While this leads to a number of
scaling issues including knowledge modularization as
domains [Neighbors84], long-term design transactions and
incremental design modification [Baxter92], this paper
focuses on alleviating the computational costs induced
simply from processing large software systems, and
computing symbolic results, by applying parallel
computing methods for irregular computations.

Microprocessors are blazingly fast at integer arithmetic,
but not nearly so good at symbolic computation. Symbolic
computation for software engineering tasks are growing in
scale as the software applications grow. This suggests a
growing demand for cycles, and one method for alleviating
that demand is parallel computation.

One doesn’ t simply retrofit an application with
parallelism; this has proven to be a very difficult task in the
scientific computation world, which generally has
“simpler” computations than symbolic ones. When
designing tools for large symbolic computations, one
should then consider how parallelism will be built into such
a tool from the very beginning. This in turn requires a
careful analysis of what kinds of parallelism the tool should
use and how that will be supported.

A method for supplying parallelism to an application is
to build it on top of a conventional multiprocessing
operating system that supplies a threads package, program
the application in any convenient programming language
such as C, and hand-code calls on the threads package
when parallel opportunities are available. For complex
parallelism tasks, this has proven to be impossible to code,
debug and maintain, and is a sure route to failure for a large
application. Worse, such applications tend to be very
unrobust in the face of exceptions, because thread packages
offer no organized way to manage exceptions in the face of
complex parallel structures.

Handling complex entities by use of (“domain-
specific”) languages in which those entities are explicit is
often the key to managing such entities. Parallelism, we
claim, is no different; if one wants to manage complex
parallelism well, then defining a language in which the
concepts are explicit makes them easier to code and can
enable a compiler to take care of all the complex
interactions that ensue, allowing an application
programmer to pursue his task more effectively.

We have built a industrial-strength program analysis
and transformation tool called the “DMS Software
Reengineering Toolkit” , with the intention and currently
some initial success of applying it commercially to very
large software systems having multiple source languages,
tens of thousands of source files, and millions of lines of
code. We designed and implemented PARLANSE, a
programming language with explicit support for fine-grain
irregular parallelism with strong exception support, and
built DMS entirely in PARLANSE. With several years of
implementation and basic experience DMS and
PARLANSE behind us, we are able to describe some
interesting applications of PARLANSE, suggesting that we
are on the right track.

Section 2 discusses the scaling problems using
microprocessors for symbolic computation. Section 3
outlines DMS, an industrial-strength program
transformation system that faces these issues by employing
a parallel programming language, PARLANSE, as its
foundation. Section 4 lists a number of industrial
applications of DMS. Section 5 discusses irregular
parallelism as the basis for parallel symbolic computation.
Section 6 sketches PARLANSE and its support for
parallelism. Section 7 covers a number of parallel
symbolic applications to which PARLANSE has been

applied. Section 8 provides a summary of results.

2 Microprocessors and Symbolic Computation

Modern microprocessors are designed to execute basic
integer instructions quickly by using deep pipelines,
multiple function units, “ large” instruction and data caches,
and branch prediction/avoidance schemes. Deep pipelines
enable the execution of multiple instructions by
overlapping execution phases; multiple functional units
allow the harnessing of instruction-level parallelism. This
can often achieve peak rates of 1-3 instructions per clock.
Large caches (typically 250K-2Mb) lower the cost of
repeated memory accesses to the same data. Typical data
access at memory cycle times is about 50nS and caches
typically reduce access time to effectively single-clock
access times to previously captured data. Since caches are
modest in size compared to the main memory, any program
that must touch data volumes larger than the cache are
reduced to memory access times rather than cache access
times. A deep pipeline must be continually fed new
instructions to maintain high throughput, and conditional
branches make it difficult to determine which sequence of
instructions to follow. Mispredicting branches can cause
such deep pipelines to flush when a branch is taken,
reducing the throughput rate to 1 instruction for the tens of
clocks it takes to refill the pipe, losing a performance factor
of 60 or more. Consequently, such processors implement
many heuristics to predict branches, and even offer
methods to avoid branches by defining instructions with
conditional execution (Intel MOVCC, ARM).

Large software systems can have millions of source
lines of code (SLOC). The Linux kernel 2.4.2 has 2.3x106
SLOC of C code alone [Wheeler02]. Windows 2000
purportedly has 29x106 SLOC [Lucovsky00]. A typical
line of C code translates to about 6 abstract syntax tree
nodes, so Windows 2000 is 0.18x109 nodes. A 1GHz CPU
may provide 2 GIPs peak; a trivial analysis requiring 100
instructions per node then requires 10 seconds of CPU. If
we somehow succeed in fitting AST nodes fit into single
cache lines, the program still exceeds the size of the cache
by orders of magnitude, so cache line accesses run at
memory speeds, ensuring that simply touching the entire
program costs 10 seconds. If we wish to give an engineer a
fast turnaround tool after exhausting our algorithmic bags
of tricks, our only available alternative is to provide parallel
computation to alleviate these costs.

Actual computations are more expensive than these.
We typically wish in match program fragments against
patterns, apply multiple program transforms to a small
fragment of source code to analyze/enhance it, or compute
inferences over the source program. Such symbolic
computations take hundreds of instructions per tree node
when executed interpretively. Compiling such symbolic
computations is clearly a good idea, when one has the time

and energy to build such special purpose compilers.
However, even such compilation can only alleviate the
costs; scale ultimately can always demand more
computational horsepower than we have available.

Ultimately, symbolic computation on large artifacts is
simply expensive. It makes sense to optimize an engineer’s
time by applying multiple processors in parallel to tasks of
interest to the engineer. It is well known that it is
extremely difficult to parallelize a program after it is
implemented; the conclusions is that any large parallel
symbol computation should be designed to run in parallel
from the beginning. This is turn requires that the symbolic
computation be coded in a system which makes it practical
and efficient to encode parallel symbolic computations.

A happy consequence of the microprocessor revolution
is that the incremental cost of additional microprocessors in
a computer system is small. A typical CPU in a $1000
system costs retail $125 (AMD). The CPU vendors have
reached market saturation; most computer system users
already have one or more systems, and little motivation to
buy another except as replacements. To maximize their
profits, CPU vendors will, we think, increasingly turn to
placing multiple CPUs in single systems with shared buses
(“Symmetric Multiprocessing”) to leverage such system
replacements. We can already see this effect in the
marketplace; commodity 2 and 4 way SMP systems are
widely available commercially. Initial attractions of such
offerings are faster processing of graphics for games and
pictures (Apple Power Mac G4), so this can be justified
from a pure consumer focus. Other vendors provide larger-
scale microprocessor systems as servers; Unisys offers up
to 32 Pentium 4s in a single SMP system (E7000).

3 DMS

Early experience with Draco [Neighbors84], a multi-
domain program transformation system, lead to automated
porting between LISP dialects between two very different
platforms [ABFP86]. The ideas behind the port eventually
lead to a theory of Design Maintenance by capture,
revision, and replay of transformational designs [Baxter90,
Baxter92, BaxPidg97], driven by “designs” that explain
program functionality, performance, implementation, and
rationale [Baxter01b].

The vision of Design Maintenance as a practical,
scalable tool is the driver behind the present commercial
implementation of the DMS Software Reengineering
Toolkit [DMS2001]. DMS is presently available for
industrial strength reengineering and code-generation
applications. Future versions should be capable of reverse-
engineering low-level applications back to specifications
[BaxMeh97].

The DMS Software Reengineering Toolkit is
generalized compiler technology used to carry out practical,

custom automated analyses, enhancement and code
generation for large-scale software systems. The core
component of DMS is a rewriting engine, enabling the
principal benefit: reuse of generative knowledge cast as
source-to-source transformations. However, the core issue
for realizing a practical system is scale, along a number of
axes. DMS provides for scale in encoding and working
with multiple domain languages, at multiple levels of
abstraction, for million-line source/target systems, using
parallel computation as a foundation.

We believe that DMS provides the “right” generative
technology base, in which reusable implementation
knowledge (rather than code) is cast in the form of:

1) Specification parsers using robust GLR/Tomita
[Tomita86, vandenBrand98] parsers, to
simplify the problem of defining arbitrary
human-readable specification languages and
acquiring specification instances to drive
generative processes. (The DMS vision
includes the notion of graphical domains, but
this is not presently implemented).

2) Source-to-source transformations (“component
implementation knowledge”). These

a. implement optimizations with a domain
and refinements between domains
[Neighbors84]. (Unlike Draco, procedural
and mixed transformations are also

practical under DMS.)

b. are tightly integrated with the parsing and
lexing technology to enable use with real
languages (such as C++, Java, Progress)

c. are executed by an associative-
commutative rewrite engine, enabling
good symbolic simplification for arbitrary
arithmetic and Boolean formulas

3) High-level reusable knowledge about
sequencing of transformations,

4) Domain-language specific analysis procedures
usually implemented generatively by DMS
from attribute evaluator specs

5) A parallel execution foundation (PARLANSE)
to maximize the amount of computational
horsepower available for analysis or
transformation (the attribute evaluators are
compiled by DMS into parallel PARLANSE
code based on attribute information flow).

Some other generative methods, while widely available
and therefore initially attractive, fail to handle
scalability issues and will ultimately lead their users to
long-term problems.

Parser

Domain

Definition

Transformation

Engine

Transforms

Analyzers

Methods

Analyze/xform/undo requests

Unparser definitions

Parser
Definition

Domain
Notation
(Spec)

Internal

Form

Representation

Internal

Form

Representation

Domain
Description

Graph

Viewer

Unparser

Domain

Notatio
n (Code)

Pixels

Engineer

Actions

Focus

Figure 1: DMS Architecture

4 Applications of DMS
DMS has been used for a number of practical industrial

applications, most focused on reengineering but some on
generation:

1) Source formatting (“beautification”), and its
converse, obfuscation by consistent identifier
mangling

2) Removal of dead preprocessor conditionals from
C source code (tens of rules) [BaxMeh01]

3) Detection of duplicate (“cloned”) code
(procedural analysis implemented in parallel),
and macroized removal of clones (tens of rules)
[BaxterEtAl98]

4) Insertion of test-coverage probes for Java, C and
COBOL (with nearly trivial generalization to
other languages) (roughly a hundred rules)
[Baxter01a]

5) Porting JOVIAL (a legacy DOD language) to C,
including translation of macros (commercial
work in progress, several thousand rules). A
400K SLOC application has been ported and is
under evaluation at the time of writing.

6) Generation of factory controller code from
factory manufacturing process descriptions
(commercial work in production; thousands of
rules, several layers of domain languages and
refinements, very strong Boolean formula
simplification)

7) Generation of fast XML parsers from XML
DTDs (work in progress; tens of rules)

8) DMS Self application:

a. Generation of fast UNICODE lexers

b. Generation of million-line parallel partial-
order attribute evaluators, via DMS-based
attribute evaluators

c. Source prettyprinting

d. Test probe insertion

Research work using DMS is focusing on reengineering
Web sites [Ricca02].

 Since DMS is neutral about the languages it processes,
it is expected to be very useful in handling hardware design
languages such as Verilog, and mixed language hardware-
and-software co-designs. We have done some
experimental work with Verilog and VHDL.

5 Irregular parallelism and Symbolic
computation

Parallelism generally brings one of two models to mind:
data parallelism and distributed computation. Data parallel
models are those in which there exist large bodies of data
which can be partitioned in parts that need essentially
homogeneous processing. It is traditionally seen in
physical model computations in the form of large arrays
(e.g, a billion elements), which are partitioned into
geometrically regular subregions and distributed across a
number of processors, each of which processes its elements
(typically applying only a few machine instructions per
element, such as multiply-and-accumulate) and exchanges
subregion edge data as needed with its assigned subregion-
edge neighbors. These processors tend to synchronize at the
end of each conceptual processing step (such as a matrix
multiply).

Distributed computation tends to be seen in applications
where the work can be statically divided into possibly
heterogeneous parts and distributed across possibly
heterogenous processors (some of which are designed to
carry out their part of the computation efficiently, such as
an FFT, or have access to a key resource, such as a
database), which communicate as needed to manage the
entire computation. Both of these classes are successful
when the computational fragments are relatively large
compared to the communication and synchronization costs.

There is a third class of parallelism which seems not
widely discussed, which we call “ irregular parallelism”
(sometimes called “control parallelism). This class occurs
when there is a large amount of computation to do, but the
individual parts are heterogeneous, small to modest in size,

(|; first (<< second fourth) (+= x)
 second (= z (fib x))
 third (sort (. y))
 fourth (>> third) (= f y:x))|;

(+= x)

(= z

(fib x))

(sort (. y))

(= f y:x)

(+= x)

(= z

(fib x))

(sort (. y))

(= f y:x)

 Figure 2: Partial order parallelism

are unpredictable in advance, and require considerable
synchronization. Additionally, one may speculatively
compute results (possibly in parallel), leading to the need
for stopping useless speculative computations.

Symbolic computation for program analysis and
manipulation seems to fit this model well. Here, primitive
data elements are fragments of a program representation
such as an abstract syntax tree node and its near children.
Scale occurs because individual element computations can
be expensive (pattern match, rewrite, attribute
extraction/composition/movement), because rewriting for
(e.g. Boolean) optimization can be NP complete, and
because the program to be manipulated can itself be quite
large (million-line C programs, or factory-controller code
containing 25K complex Boolean expressions).
Speculation can occur when searching a space of possible
answers.

Considerable research in irregular parallelism (without
speculation) occurred under the rubric of “dataflow
computation” [Arvind93], and was the initial inspiration for
PARLANSE. Dataflow research focused essentially on
hardware supporting distributed computations with
granularity roughly matching the primitives of the
computation (add, index, compare, etc.). This did not lead
to any commercially successful systems because of the
requirement for special hardware, and the overhead
(communication and synchronization) costs dominated the
actual computation costs, and consequently the resulting
computation rate was not very good. A key insight from

this research was the notion of controlling the size of the
computational grain to ensure that the overhead is only a
modest fraction of the actual computational work done, to
achieve efficient execution.

6 PARLANSE

PARLANSE (a pun for “ language”) was designed to
efficiently express irregular parallelism, and enable the
construction of a large software systems (Thus, the name,
PARallel LANguage for Symbolic Expression). This
meant trying to achieve several goals:

1) Ensuring that the language could be compiled to
very good code in the absence of parallelism

2) Simplify the specification of parallelism and its
management

3) Integrate exception handling with parallelism
4) Controlling grain size to aid efficient computation
5) Providing software engineering support.

The first issue is a “do no harm” issue. Not every block
of code can be highly parallel, nor can one achieve a
meaningful speedup if one executes, in parallel, code which
is necessarily significantly slower than that producible by
good compilers for sequential languages. This suggests
that most code sequences, especially the sequential
portions, should be competitive in performance to that
produced by good compilers for standard languages. As a
consequence, we chose a “C” like foundation for
PARLANSE, because much of the focus of the compiler
community is on compiling C-like languages. Thus the

(define merge_sort_in_place (procedure [data (reference (array SomeType 1 dynamic))])
 (action
 (local
 (||
 (define small_fast_sort (procedure [lower integer] [upper integer]) ...)define
 (define merges_subsequences (procedure [lower integer]
 [midpoint integer]
 [upper integer]) ...)define
 (define sort_subsequence (procedure [lower integer] [upper integer])procedure
 (action (;; (ifthen (>= lower upper) (return)); sorted subsequence
 (ifthen (< (- upper lower) 20)
 (;; (small_fast_sort lower upper) (return));;)ifthen
 (local (= [midpoint integer] (// (+ lower upper))//)=
 (;; (|| (sort_subsequence lower (-- midpoint))sort
 (sort_subsequence midpoint upper)sort
)||
 (merge_subsequences lower midpoint upper)
);;
)local
);;
)action
)define
)||
 (sort_subsequence 1 (upperbound data 1)) ; top level call on subsorting
)local
)action
)define

 Figure 3: Parallel Sorting by Divide and Conquer

language has the following constructs, which were often
modeled initially after those in C:

• Scalar data types: boolean, integer,
character, float with the usual typed
arithmetic over such values. A symbol type
provides valueless but comparable identifiers which
are globally unique (rather like enumeration value
names).

• Compound data types: static arrays,
structures, and tagged unions. Strings are
simply arrays of characters. Unlike C, arrays always
have a known size, and there are dynamic arrays
which can be resized at any time.

• Reference (pointers) to any type. Unlike C, no
pointer arithmetic is allowed, athough one can take
the address of a structure slot or static array element.

• Standard side effects such as assignment and
incrementation of variables.

• Standard control constructs such as ifthen,
while, do, function/procedure call, etc.

• Functions (and procedures). Unlike C, these take an
explicit structure as an argument; one can build an
argument list independently of calling a function.
Unlike C, function signatures are explicit types and
can be defined by a source library and used by name;
this allows us to change signatures of libraries easily.
Unlike C, functions are first class, lexically scoped
and can be passed as values. Since programmers
should not know much about sizes of values
PARLANSE can pass arbitrarily big values to and

from functions, and the compiler manages this
efficiently based on the size of the result.
PARLANSE programmers do know that it is cheaper
to pass some values by reference. Because
PARLANSE is a parallel language, activation
records are heap allocated.

• Data access paths. Rather than complex syntax for
array and structure access, PARLANSE simply
simply separates access elements by a colon, e.g.,
A:B:C. The meaning is determined by context.

The second issue is to make parallelism easily
accomplished by the engineer, and easily extracted from
the application, so that the compiler doesn’ t have to
struggle to locate it. We chose to do this by providing two
facilities: a) the notion that expressions are dataflow-
parallelism by definition, b) the programmer can easily
specify standard parallelism idioms, and actually has to
specify sequentiality in an effort to discourage sequentially-
by-accident.

Exception handling has proven its worth repeatedly in
building large complex systems (like DMS). It seems
especially important to make exception handling work
properly even in the presence to parallel constructs, and no
practical language available when we started in 1996 (or
even today to our knowledge) provides reliable exception
handling that crosses parallelism boundaries (e.g., Java
exceptions work only within threads). In retrospect,
implementing exceptions in PARLANSE was one of our
best decisions. DMS allows parameterized exceptions to
be declared, raised, caught, inspected, and propagated. An
extremely nice property is that exception handler overhead
is exactly zero if no exceptions occur, so PARLANSE

(define parallel_visit (procedure [tree AST:Node]
 [visitor (action (procedure [node AST:Node]))]
 (action
 (local
 (|| [tree_walk team]
 (define visit_root_and_children (procedure [subtree AST:Node])
 (;; (do [i natural] 1 (AST:Nchildren subtree) 1
 (draft tree_walk
 visit_root_and_children
 (AST:NthChild subtree I)
)draft
)do
 (visitor subtree)
);;
)define
)||
 (;; (visit_root_and_children tree)
 (wait (event tree_walk)) ; wait for all grains to finish
);;
)local
)action
)define
 … (par al l el _vi s i t my_t r ee (act i on (pr ocedur e [node AST: Node])
 (r ewr i t e node r ul es)

) act i on) par al l el _vi s i t Figure 4: Parallel Tree Walk and
Parallel Rewriting

applications often use exceptions instead of explicit
comparions to efficiently handle rare cases.

Simply being able to specify parallelism does not help
if the grain size is too small (causing too much context
switching time overhead) or too large (not enough
parallelism to win). However, only the compiler is likely to
have a really good idea of what the proper grain size is on
an architecture. As a consequence, parallelism in
PARLANSE is often advisory (“potential parallelism”)
rather than mandatory, and the compiler is allowed to
coalesce parallel computations as it sees fit. So while
PARLANSE has computation grains as explicit entities,
often parallelism is not specified for grains, but rather for
code, and the compiler handles all the grain management in
such cases. The principal means by which this is achieved
are the “potential parallel” construct and its generalization,
the “partial order” construct. The current compiler does not
coalesce grains, but heavy use of the potential parallelism
construct leaves the next compiler free to do as it sees fit.

What we have done is to arrange for the compiler to
manage much of the implicit grain initialization and context
switching. This enables the current PARLANSE compiler
to create, schedule, run, stop, and destroy a grain with some
30 machine instructions. Consequently a block of 60
machine instructions in a grain can allow a 2 processor
system to outperform a single processor system.

Good software engineering support can make building a
large system easier and more manageable. Besides
exception handling, PARLANSE offers modules, name
space management, and good debugging facilities.
Modules allow sets of named PARLANSE entities to be
grouped into conceptual packages, with public and private
definitions. PARLANSE provides nested name spaces with
lexical access even for passed function values.

By providing assertion statements (trust)that are
automatically converted into runtime tests by a compile-
time debug switch, we made it easy for programmers to
state checkable constraints. In addition, the compiler

(define parse_file_set (procedure [files (array (reference string) 1 dynamic)])
 (action
 (local (|| [live_parsers team]
 (= [parsed_files HashTable] ; atomically updateable hash table
 (InitializeHashTable (action (procedure reference HashTableEntry))
 (= ?:parsed ~f) ; initialize slot to false
)action
)InitializeHashTable)=
 (define parse_file (procedure [file (reference string)])
 (local (= [needs_parsing boolean] false)
 (;; (Update parsed_files file
 (action (procedure (reference HashTableEntry)
 (ifthen (~ ?:parsed)
 (|| (= ?:parsed ~t) (= needs_parsing ~t))||
)ifthen
)action)Update
 (ifthen needs_parsing
 (local [= [tree Node](Parse file))
 (AST:ScanNodes tree
 (procedure [node Node])
 (ifthen (IsIncludeFile node)
 (draft parse_file (IncludeFileName node))
)ifthen
)procedure
)AST
)local
)ifthen
);;
)local
)define
)||
 (;; (do [i integer] 1 (upperbound files 1) 1
 (draft live_parsers parse_file files:i) ; put these files into work list
)do
 (wait (event live_parsers)); wait for all parsers done
);;
)local
)action
)define
 Figure 5: Parsing Many Source Files in Parallel

inserts array range checks, invalid pointer checks (but not
dangling pointer checks), and verifies that union tags are
set properly when union accesses are made. Well-written
PARLANSE codes tend to have such assertions every 10
lines or so, and violations of the assertions produce source
location information directly. We find most bugs by
reported assertion violations. We plan to add pre and
post conditions to function signatures in the future.

Dynamic storage is a necessary curse in symbolic
programs. You must have it, and you must clean up
afterwards. We chose not to have a garbage collector,
because in 1996 nobody knew how to build a parallel one
and we could not risk the DMS project fate on an un-
implementable idea (to date, there are still very few
practical parallel garbage collectors, and they only exist in
research systems). Instead, we provide the usual primitive
facilities of new and free, adding the notion of a
referenceable storage pool from which a new can be
performed, and which can be freed as a unit. A pool is
generally created when a subcomputation starts, and
released when finished, so “ leaks” of storage with respect
to the pool are only transient effects. We believe this idea
will still be useful, and certainly does not stand in the way
of an eventual garbage collector. For many list-
construction tasks where the list is modest size, our low-
overhead dynamic arrays have turned out to be
spectacularly useful and efficient.

PARLANSE has some other unusual properties. It
distinguishes between values and entities. Values can be
copied, processed, and compared for at least equality, and
for which one cannot construct a reference. Entities are
individually unique, to which only entity-type-specific
operators can apply, always including “construct a
reference” . A classic entity found in most languages is the
variable, which has operations to fetch and store its
value. Other entity types represent items managed by
PARLANSE such as pools, individual parallel grains
of execution, and semaphores. The new operator can
dynamically create new entities as needed.

The language is entirely based on UNICODE, allowing
UNICODE strings and names. In symbolic computation
for arbitrary domains, it is convenient to name things they
way the domain names them; if the language naming
convention insists on a fixed character set, then some
domains will have names that are difficult to express.
PARLANSE allows identifier names to be arbitrary strings
by use of judicious escape characters. Thus grammar token
names, no matter how spelled, can be easily written in
PARLANSE.

The oddest quirk is probably the LISP-like notation we
chose to use for PARLANSE. All language forms have the
syntax

 (keyword form1 form2 … formN)keyword

The idea was to avoid the usual endless language-design

nested_class_declaration = nested_class_modifiers class_header class_body ;
<<BuildSymbolTableFrame>>:
 {
 IF nested_class_declaration[0].entity_kinds == MemberClassInInterface THEN
 nested_class_declaration[0].modifiers =
 AddOneModifierToModifiers(AddOneModifierToModifiers(nested_class_modifiers[1]
 .modifiers,ModifierPublic),ModifierStatic);
 ELSE
 nested_class_declaration[0].modifiers = nested_class_modifiers[1].modifiers;
 ENDIF;
 class_body[1].symbol_space =
 CreateChildSymbolSpaceOf(nested_class_declaration[0].symbol_space,+1);
 AddToNodeToSymbolSpaceMap(class_body[1].,class_body[1].symbol_space);
 class_body[1].constructors = CreateSymbolSpace();
 class_body[1].wrapper_declaration =
 AddClassSymbolToSymbolSpace(nested_class_declaration[0].symbol_space,
 class_header[1].simple_name,
 MemberClass,
 class_header[1].node,
 nested_class_declaration[0].modifiers,
 VoidType,
 VoidSignature,
 class_body[1].constructors,
 class_body[1].symbol_space,
 nested_class_declaration[0].wrapper_declaration);
 class_body[1].label_space = nested_class_declaration[0].label_space;
 AddToNameResolutionTable(class_header[1].node,class_body[1].wrapper_declaration,
 false);
 }
 Figure 6: Attribute Grammar Evaluator Specification to Process Java Class Header

arguments about what punctuation to put where. In
retrospect, we traded it for an argument about what
keywords to put where; fortunately, the supply of keywords
can be vast and so we never ran out of “punctuation” . The
trailing keyword is optional and is called “coloring” ; if
present, the compiler insists it match the opening keyword,
thus catching most nesting errors easily. Well-formed
PARLANSE programs are like rainbows with matching
colors on each end.

6.1 Primitive parallelism: gr ai n

A parallel language must have some unit of dynamic
execution, which in PARLANSE is a grain. Operations
on grains include:

• (spawn function data) spawn creates a new grain
executing function on the constructed function
argument data., and returns a reference to a new
grain.

• (wait (event grain)) The invoker waits until
the grain completes execution.

• (abort grain) The grain receives an
asynchronous abort exception, forcing it to clean up
and finish.

• (doom grain) The designated grain is told to
destroy itself after completion; no further attention to
it is needed.

PARLANSE offers the classic semaphore with lock
and unlock operators which we do not discuss further.
More interesting are events, which can be signaled to
indicate the occurrence of an significant action, and
waited upon for such a signal. Once signaled, further
waits cause no delays. The operation (event grain) is
simply a means to obtain a reference to the event associated
with a grain’s completion. Events having values can
participate in expressions as operands, and provide a direct
means to implement certain dataflow computations.

Given grain operations (including new and free) and
just semaphores, one can program, with enough effort,
arbitrary dynamic parallel systems. This is essentially the
services provided by an OS threads package, albeit more
efficiently because of careful code generation by the
compiler. It still has the disadvantage of relatively high
overhead over other PARLANSE mechanisms.

All the operations on parallel entities happen
atomically, so there are entire classes of errors one cannot
make in PARLANSE that could occur with a conventional
threads package (e.g., this thread is aborted halfway
through the process of aborting another thread itself). We
have no further space to discuss this here, but PARLANSE
has considerably more machinery for managing this.

The PARLANSE compiler and runtime system
cooperate to ensure that no more than an adequate supply
of grains exist at any one moment, to avoid the problem of
having unbounded parallelism consume unbounded space.
Built in time-slicing also ensures that arbitrary parallel
execution succeeds even on single processor machines.

6.2 Parallelism with purpose: t eam

A team entity represents a set of grains (or subteams)
forming a parallel computation with an implicit purpose.
Its value is in its use to manage the execution and/or
termination of the entire parallel computation associated
with that purpose. A new team starts with an empty set
of member grains.

• (draft team function data) A new grain is
spawned executing function on data. The grain is
added to the team, and then doomed..

• (wait (event team)) The invoker waits until
all grains in the team have completed.

• (abort team) Each grain in the team receives an
asynchronous abort exception.

Teams provide a more structured approach to managing
sets of grains than provided by standard thread packages.
In particular, teams enable a manager computation to wait
for a team result without knowing how many team
members exist, or how/when those team members came to
be (including being started by other team members!). It
also enables speculative computations to be clearly grouped
and easily stopped if later deemed inappropriate.

6.3 Statically scheduled teams

Dynamically constructed and managed parallelism is
general, but has relatively high overhead. It is often
convenient to harness statically-determinable parallelism.
The PARLANSE compiler can manage this more
efficiently precisely because it knows more, enabling it to
issue instruction sequences to efficiently initialize, enque,
and destroy the grains representing the static team.

Sequential code is the limiting case of a conceptual set
of grains occurring in a serial order, and is coded as:

 (;; code1 code2 codeN);;

for arbitrary blocks of code.

Potential parallelism declares that the set of
computations can be executed in any order (including
serially) and the result is acceptable. The compiler can
ignore this parallel construct if the computations are too
small. It is coded as

 (|| code1 code2 codeN)||

Partial order parallelism shows necessary ordering
relations between computations to achieve a desired effect.
Each computation gets a label and an optional ordering
relationship in time (<< before or >> after) with respect to
other labels in the partial order.

 (;| labe1l (<< labels) code1

 label2 code2

 labelN (>> labels) codeN);|

Figure 2 shows the smallest partial order that cannot be
coded with pure potential parallelism and sequentiality.

Partial order parallelism is also potential parallelism,
because the computations can be ordered linearly and
executed that way with no parallelism. It generalizes both
sequential and potential parallism trivially.

7 Symbolic Parallel Applications

In this section, we briefly exhibit a number of parallel
computations implemented in PARLANSE. All of these
examples have run on 1 to 8 way SMP Wintel systems.

7.1 Parallel sorting

A parallel merge sort is shown in Figure 3. It uses
potential parallelism to recursively divide and conquer the
problem, by sorting both halves of a list, and then merging
the sorted parts. Note the lexical scoping allows the
recursive procedure to access the data array implicitly.

7.2 Parallel Tree Walk and Rewriting

Following the divide and conquer theme, Figure 4
shows a parallel tree walk, applying a visitor function
bottom upwards. In the bottom of the figure, we invoke the
tree walk, passing an anonymous procedure (action) as
the visitor function that calls a rewriting engine with a set
of rewrite rules, to apply those rules to the action’s tree
node argument. This implements bottom-up parallel
rewriting.

7.2 Parallel Parsing

DMS is asked to parse software systems with thousands
of files, often by giving it some source file subset which
requires it to also recursively parse the include files
mentioned by those sources. The code in Figure 5
accomplishes this. Since the number of source files is
unknown, we employ a team to carry out the collective
work. Each spawned subparser parses its designated source
file, then inspects its tree for include nodes, and spawns
children parsers as needed. The hashtable tracks which
files have been requested for parsing, to avoid repeated
parses. While not shown, the hashtable module is access
and update safe for parallel threads.

7.3 Parallel Attribute Grammar Evaluation

Analysis of tree-structured artifacts can often be
conveniently implemented using attribute grammars. DMS
offers an attribute grammar evaluator to the analysis
engineer. A useful analysis is the construction of a symbol
table. Figure 6 shows a single attribute grammar rule for
processing a Java class header. A DMS attribute rule
passes (computed) values up and down the tree, and may
also cause side-effects, such as updating the symbol table
with the class name and type. The DMS Attribute
Grammar Evaluator tool does a data flow analysis of the
attribute rule computation, automatically determines a
partial order that will effect the attribute rule, and
synthesized PARLANSE code shown in Figure 7, with 9
partial order steps and up to 5 simultaneous units of
parallelism

Our COBOL NameResolver is some 15000 lines of
attribute grammar. The DMS attribute rule evaluator
produces some 800,000 lines of partial order PARLANSE
code to implement it. We believe this to be one of the
largest parallel programs on the planet. It is in daily use.

7.5 Other Parallel applications

PARLANSE has been applied to a number of other
parallel applications, which we can only mention here for
space reasons:

• Clone Detection on 1.5 million lines systems

• Java Name and Type Resolution (above the attribute
grammar level), which pipelines symbol table
construction.

• Fast interactive determination of selected graphical
object on complex displays by recursive space
partitioning.

• Parallel rendering of software engineering diagrams
with several thousand nodes [Quigley02].

8. Summary

This paper has discussed how symbolic computation on
scale needs parallelism. An overview of an industrial
strength, large-scale transformation system, DMS, was
provided as a motivating example. The DMS
implementation language, PARLANSE, is a parallel
programming language that provides facilities for irregular
parallelism as found in symbolic applications. We
exhibited a number of running parallel programs used for
various symbolic computations inside DMS.

We have preliminary numbers showing that indeed we
are achieving some of the desired parallelism. While we
have not achieved maximal parallelism under most
circumstances, we think this is more a tuning problem than
a fundamental technology problem. Being able to construct
a reliable system as complex as DMS with parallelism is a
fundamental step towards actually harnessing it.

References
[ABFP86] G. Arango, I. Baxter, C. Pidgeon, P. Freeman, TMM: Software

Maintenance by Transformation, IEEE Software 3(3), May
1986, pp. 27-39

[Arvind93] R. Nikhil, G. Papadopoulos, Arvind *T: A Multithreaded
Massively Parallel Architecture. International Symposium on
Computer Architecture 1992, ACM Press

[Baxter90] I. Baxter, Transformational Maintenance by Reuse of
Design Histories Ph.D. Thesis, Information and Computer
Science Department, University of California at Irvine, Nov.
1990, TR 90-36.

[Baxter92] I. Baxter. 1992. Design Maintenance Systems, Comm. of the
ACM 35(4), 1992, ACM.

[Baxter01a] I. Baxter, Branch Coverage For Arbitrary Languages Made
Easy: Transformation Systems to the Rescue!,
IWAPATV2/ICSE2001,
http://www.semdesigns.com/Company/
Publications/TestCoverage.pdf

[Baxter01b] I. Baxter, Breaking the Software Development Roadblock:
Continuous Software Enhancement By Design Maintenance,
Software Design and Productivity Workshop, Vanderbilt
University 2001, http://www.isis.vanderbilt.edu/sdp/Papers/
Ira%20Baxter%20(Breaking%20the%20Software
%20Development).doc

[BaxMeh97] I. Baxter and M. Mehlich, “Reverse Engineering is Reverse
Forward Engineering” . 4th Working Conference on Reverse
Engineering, IEEE, 1997.

 [BaxMeh01] I. Baxter, M. Mehlich, Preprocessor Conditional Removal
by Simple Partial Evaluation, AST01/WCRE2001, 2001,
IEEE.

[BaxPidg97] I. Baxter and C. Pidgeon. Software Change Through Design
Maintenance. International Conference on Software
Maintenance, 1997, IEEE

[BaxterEtAl98] I. Baxter, et. al Clone Detection Using Abstract Syntax
Trees, International Conference on Software Maintenance,
1998, IEEE.

[DMS2001] www.semdesigns.com/Products/DMS/DMSToolkit.html.
[Lucovsky00], M. Lucovsky, From NT OS/2 to Windows 2000 and

Beyond. A Software-Engineering Odyssey, Keynote, 4th Usenix
Windows Systems Symposium 2000, IEEE

[Neighbors84] J. Neighbors. The Draco Approach to Constructing
Software from Components. IEEE Transactions on Software
Engineering 10(5):564-574, 1984.

[Quigley02] A. Quigley, Large Scale Relational Information
Visualization, Clustering and Abstraction Ph.D. Thesis,
Computer Science Department, University of Newcastle,
Australia, March 2002

[Ricca02] F. Ricca, P. Tonella, and I. Baxter, Web Application
Transformations based on Rewrite Rules, submitted,
Information and Software Technology, September 2002,
Elsevier]

[Tomita86] M. Tomita, Efficient Parsing for Natural Languages,
Kluwer Academic Publishers, 1988.

[Wheeler01], D. Wheeler, More than a Gigabuck: Estimating
GNU/Linux’s Size, Sixth International Workshop on Program
Comprehension, 1998, IEEE

[vandenBrand98], M van den Brand, et al, Current Parsing Techniques in
Software Renovation Considered Harmful, Sixth International
Workshop on Program Comprehension, 1998, IEEE

(; |
 po1
 (i f t henel se
 (==
 n0: cont ent s: val ue: at t r i but es: ent i t y_ki nds
 Ent i t yKi nds: Member Cl assI nI nt er f ace)
 (l ocal
 (= [_n1_ _Node_] (_cr eat e_at t r i but es_f or _exi st i ng_chi l d_ _n0_ 2))
 (; ;
 (; ;
 (_eval uat i on_pr ocedur es_: (_get _eval uat i on_pr ocedur e_i ndex_f or _node_ _n1_) _n1_)
 (=
 n0: cont ent s: val ue: at t r i but es: modi f i er s
 (Modi f i er s: add_one_modi f i er _t o_modi f i er s
 (Modi f i er s: add_one_modi f i er _t o_modi f i er s
 n1: cont ent s: val ue: at t r i but es: modi f i er s
 Modi f i er s: Publ i c)
 Modi f i er s: St at i c))
) ; ;
) ; ;
) l ocal
 (l ocal
 (= [_n1_ _Node_] (_cr eat e_at t r i but es_f or _exi st i ng_chi l d_ _n0_ 2))
 (; ;
 (; ;
 (_eval uat i on_pr ocedur es_: (_get _eval uat i on_pr ocedur e_i ndex_f or _node_ _n1_) _n1_)
 (=
 n0: cont ent s: val ue: at t r i but es: modi f i er s
 n1: cont ent s: val ue: at t r i but es: modi f i er s)
) ; ;
) ; ;
) l ocal
) i f t henel se
 po3
 (=
 n3: cont ent s: val ue: at t r i but es: symbol _space
 (Cr eat eChi l dSymbol SpaceOf
 n0: cont ent s: val ue: at t r i but es: symbol _space
 +1))
 po8
 (=
 n3: cont ent s: val ue: at t r i but es: const r uct or s
 (Cr eat eSymbol Space))
 po13
 (_eval uat i on_pr ocedur es_: (_get _eval uat i on_pr ocedur e_i ndex_f or _node_ _n2_) _n2_)
 po10 (>> po1 po3 po8 po13)
 (=
 n3: cont ent s: val ue: at t r i but es: wr apper _decl ar at i on
 (AddCl assSymbol ToSymbol Space
 n0: cont ent s: val ue: at t r i but es: symbol _space
 n2: cont ent s: val ue: at t r i but es: s i mpl e_name
 Ent i t yKi nds: Member Cl ass
 n2: cont ent s: val ue: at t r i but es: node
 n0: cont ent s: val ue: at t r i but es: modi f i er s
 Types: Voi dType
 Types: Voi dSi gnat ur e
 n3: cont ent s: val ue: at t r i but es: const r uct or s
 n3: cont ent s: val ue: at t r i but es: symbol _space
 n0: cont ent s: val ue: at t r i but es: wr apper _decl ar at i on))
 po17
 (=
 n3: cont ent s: val ue: at t r i but es: l abel _space
 n0: cont ent s: val ue: at t r i but es: l abel _space)
 po5 (>> po10 po17)
 (_eval uat i on_pr ocedur es_: (_get _eval uat i on_pr ocedur e_i ndex_f or _node_ _n3_) _n3_)
 po7 (>> po3)
 (AddToNodeToSymbol SpaceMap
 n3: cont ent s: key: node
 n3: cont ent s: val ue: at t r i but es: symbol _space)
 po20 (>> po10)
 (AddToNameResol ut i onTabl e
 n2: cont ent s: val ue: at t r i but es: node
 n3: cont ent s: val ue: at t r i but es: wr apper _decl ar at i on
 ~f)
) ; |

 Figure 7: PARLANSE code generated from Attribute Rule

