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Abstract 

Tools that analyze and enhance large-scale software 
systems using symbolic reasoning are computationally 
expensive, and yet processors are cheap.  We believe that 
enabling tools with parallel foundations will lead to 
qualitatively more useful tools. We have implemented a 
large-scale industrial-strength program transformation 
system, the DMS Software Reengineering Toolkit, entirely 
in PARLANSE, a new parallel language. PARLANSE 
provides support for irregular fine-grain parallelism with 
zero-cost exception handling. This paper sketches the 
motivation for PARLANSE, its parallelism support and how 
it is used in a number of DMS-based applications, 
including parallel rewriting and attribute evaluation. 

1 Introduction: Symbolic Computation 
       and Parallelism 

Automation is the key to productivity gains in software 
engineering.  Such automation seems best obtained by 
enabling tools to reason collectively and deeply about the 
problem domain concepts, software design and code of 
application software.  While this leads to a number of 
scaling issues including knowledge modularization as 
domains [Neighbors84], long-term design transactions and 
incremental design modification [Baxter92], this paper 
focuses on alleviating the computational costs induced 
simply from processing large software systems, and 
computing symbolic results, by applying parallel 
computing methods for irregular computations. 

Microprocessors are blazingly fast at integer arithmetic, 
but not nearly so good at symbolic computation.  Symbolic 
computation for software engineering tasks are growing in 
scale as the software applications grow.  This suggests a 
growing demand for cycles, and one method for alleviating 
that demand is parallel computation. 

One doesn’ t simply retrofit an application with 
parallelism; this has proven to be a very difficult task in the 
scientific computation world, which generally has 
“simpler”  computations than symbolic ones.  When 
designing tools for large symbolic computations, one 
should then consider how parallelism will be built into such 
a tool from the very beginning.  This in turn requires a 
careful analysis of what kinds of parallelism the tool should 
use and how that will be supported. 

A method for supplying parallelism to an application is 
to build it on top of a conventional multiprocessing 
operating system that supplies a threads package, program 
the application in any convenient programming language 
such as C, and hand-code calls on the threads package 
when parallel opportunities are available.  For complex 
parallelism tasks, this has proven to be impossible to code, 
debug and maintain, and is a sure route to failure for a large 
application.  Worse, such applications tend to be very 
unrobust in the face of exceptions, because thread packages 
offer no organized way to manage exceptions in the face of 
complex parallel structures. 

Handling complex entities by use of (“domain-
specific” ) languages in which those entities are explicit is 
often the key to managing such entities.  Parallelism, we 
claim, is no different; if one wants to manage complex 
parallelism well, then defining a language in which the 
concepts are explicit makes them easier to code and can 
enable a compiler to take care of all the complex 
interactions that ensue, allowing an application 
programmer to pursue his task more effectively. 

We have built a industrial-strength program analysis 
and transformation tool called the “DMS Software 
Reengineering Toolkit” , with the intention and currently 
some initial success of applying it commercially to very 
large software systems having multiple source languages, 
tens of thousands of source files, and millions of lines of 
code.  We designed and implemented PARLANSE, a 
programming language with explicit support for fine-grain 
irregular parallelism with strong exception support, and 
built DMS entirely in PARLANSE.  With several years of 
implementation and basic experience DMS and 
PARLANSE behind us, we are able to describe some 
interesting applications of PARLANSE, suggesting that we 
are on the right track. 

Section 2 discusses the scaling problems using 
microprocessors for symbolic computation.  Section 3 
outlines DMS, an industrial-strength program 
transformation system that faces these issues by employing 
a parallel programming language, PARLANSE, as its 
foundation.   Section 4 lists a number of industrial 
applications of DMS.  Section 5 discusses irregular 
parallelism as the basis for parallel symbolic computation.  
Section 6 sketches PARLANSE and its support for 
parallelism.  Section 7 covers a number of parallel 
symbolic applications to which PARLANSE has been 



  

applied.  Section 8 provides a summary of results. 

2 Microprocessors and Symbolic Computation 

Modern microprocessors are designed to execute basic 
integer instructions quickly by using deep pipelines, 
multiple function units, “ large”  instruction and data caches, 
and branch prediction/avoidance schemes.  Deep pipelines 
enable the execution of multiple instructions by 
overlapping execution phases; multiple functional units 
allow the harnessing of instruction-level parallelism.  This 
can often achieve peak rates of 1-3 instructions per clock.  
Large caches (typically 250K-2Mb) lower the cost of 
repeated memory accesses to the same data.  Typical data 
access at memory cycle times is about 50nS and caches 
typically reduce access time to effectively single-clock 
access times to previously captured data.  Since caches are 
modest in size compared to the main memory, any program 
that must touch data volumes larger than the cache are 
reduced to memory access times rather than cache access 
times.  A deep pipeline must be continually fed new 
instructions to maintain high throughput, and conditional 
branches make it difficult to determine which sequence of 
instructions to follow.  Mispredicting branches can cause 
such deep pipelines to flush when a branch is taken, 
reducing the throughput rate to 1 instruction for the tens of 
clocks it takes to refill the pipe, losing a performance factor 
of 60 or more.  Consequently, such processors implement 
many heuristics to predict branches, and even offer 
methods to avoid branches by defining instructions with 
conditional execution (Intel MOVCC, ARM). 

Large software systems can have millions of source 
lines of code (SLOC).  The Linux kernel 2.4.2 has 2.3x106 
SLOC of C code alone [Wheeler02]. Windows 2000 
purportedly has 29x106 SLOC [Lucovsky00].  A typical 
line of C code translates to about 6 abstract syntax tree 
nodes, so Windows 2000 is 0.18x109 nodes.  A 1GHz CPU 
may provide 2 GIPs peak; a trivial analysis requiring 100 
instructions per node then requires 10 seconds of CPU.  If 
we somehow succeed in fitting AST nodes fit into single 
cache lines, the program still exceeds the size of the cache 
by orders of magnitude, so cache line accesses run at 
memory speeds, ensuring that simply touching the entire 
program costs 10 seconds.  If we wish to give an engineer a 
fast turnaround tool after exhausting our algorithmic bags 
of tricks, our only available alternative is to provide parallel 
computation to alleviate these costs. 

Actual computations are more expensive than these.  
We typically wish in match program fragments against 
patterns, apply multiple program transforms to a small 
fragment of source code to analyze/enhance it, or compute 
inferences over the source program.  Such symbolic 
computations take hundreds of instructions per tree node 
when executed interpretively.  Compiling such symbolic 
computations is clearly a good idea, when one has the time 

and energy to build such special purpose compilers.  
However, even such compilation can only alleviate the 
costs; scale ultimately can always demand more 
computational horsepower than we have available. 

Ultimately, symbolic computation on large artifacts is 
simply expensive.  It makes sense to optimize an engineer’s 
time by applying multiple processors in parallel to tasks of 
interest to the engineer.  It is well known that it is 
extremely difficult to parallelize a program after it is 
implemented; the conclusions is that any large parallel 
symbol computation should be designed to run in parallel 
from the beginning.  This is turn requires that the symbolic 
computation be coded in a system which makes it practical 
and efficient to encode parallel symbolic computations. 

A happy consequence of the microprocessor revolution 
is that the incremental cost of additional microprocessors in 
a computer system is small.  A typical CPU in a $1000 
system costs retail $125 (AMD).  The CPU vendors have 
reached market saturation; most computer system users 
already have one or more systems, and little motivation to 
buy another except as replacements.  To maximize their 
profits, CPU vendors will, we think, increasingly turn to 
placing multiple CPUs in single systems with shared buses 
(“Symmetric Multiprocessing”) to leverage such system 
replacements.  We can already see this effect in the 
marketplace; commodity 2 and 4 way SMP systems are 
widely available commercially.  Initial attractions of such 
offerings are faster processing of graphics for games and 
pictures (Apple Power Mac G4), so this can be justified 
from a pure consumer focus.  Other vendors provide larger-
scale microprocessor systems as servers; Unisys offers up 
to 32 Pentium 4s in a single SMP system (E7000). 

3  DMS 

Early experience with Draco [Neighbors84], a multi-
domain program transformation system, lead to automated 
porting between LISP dialects between two very different 
platforms [ABFP86].  The ideas behind the port eventually 
lead to a theory of Design Maintenance by capture, 
revision, and replay of transformational designs [Baxter90, 
Baxter92, BaxPidg97], driven by “designs”  that explain 
program functionality, performance, implementation, and 
rationale [Baxter01b]. 

The vision of Design Maintenance as a practical, 
scalable tool is the driver behind the present commercial 
implementation of the DMS Software Reengineering 
Toolkit [DMS2001].  DMS is presently available for 
industrial strength reengineering and code-generation 
applications.  Future versions should be capable of reverse-
engineering low-level applications back to specifications 
[BaxMeh97]. 

The DMS Software Reengineering Toolkit is 
generalized compiler technology used to carry out practical, 



  

custom automated analyses, enhancement and code 
generation for large-scale software systems.  The core 
component of DMS is a rewriting engine, enabling the 
principal benefit: reuse of generative knowledge cast as 
source-to-source transformations.  However, the core issue 
for realizing a practical system is scale, along a number of 
axes.  DMS provides for scale in encoding and working 
with multiple domain languages, at multiple levels of 
abstraction, for million-line source/target systems, using 
parallel computation as a foundation. 

We believe that DMS provides the “right”  generative 
technology base, in which reusable implementation 
knowledge (rather than code) is cast in the form of: 

1) Specification parsers using robust GLR/Tomita 
[Tomita86, vandenBrand98] parsers, to 
simplify the problem of defining arbitrary 
human-readable specification languages and 
acquiring specification instances to drive 
generative processes.  (The DMS vision 
includes the notion of graphical domains, but 
this is not presently implemented). 

2) Source-to-source transformations (“component 
implementation knowledge”).  These 

a. implement optimizations with a domain 
and refinements between domains 
[Neighbors84]. (Unlike Draco, procedural 
and mixed transformations are also 

practical under DMS.) 

b. are tightly integrated with the parsing and 
lexing technology to enable use with real 
languages (such as C++, Java, Progress) 

c. are executed by an associative-
commutative rewrite engine, enabling 
good symbolic simplification for arbitrary 
arithmetic and Boolean formulas 

3) High-level reusable knowledge about 
sequencing of transformations, 

4) Domain-language specific analysis procedures 
usually implemented generatively by DMS 
from attribute evaluator specs 

5) A parallel execution foundation (PARLANSE) 
to maximize the amount of computational 
horsepower available for analysis or 
transformation (the attribute evaluators are 
compiled by DMS into parallel PARLANSE 
code based on attribute information flow). 

Some other generative methods, while widely available 
and therefore initially attractive, fail to handle 
scalability issues and will ultimately lead their users to 
long-term problems. 
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4 Applications of DMS 
DMS has been used for a number of practical industrial 

applications, most focused on reengineering but some on 
generation: 

1) Source formatting (“beautification” ), and its 
converse, obfuscation by consistent identifier 
mangling 

2) Removal of dead preprocessor conditionals from 
C source code (tens of rules) [BaxMeh01] 

3) Detection of duplicate (“cloned”) code 
(procedural analysis implemented in parallel), 
and macroized removal of clones (tens of rules) 
[BaxterEtAl98] 

4) Insertion of test-coverage probes for Java, C and 
COBOL (with nearly trivial generalization to 
other languages) (roughly a hundred rules) 
[Baxter01a] 

5) Porting JOVIAL (a legacy DOD language) to C, 
including translation of macros (commercial 
work in progress, several thousand rules).  A 
400K SLOC application has been ported and is 
under evaluation at the time of writing. 

6) Generation of factory controller code from 
factory manufacturing process descriptions 
(commercial work in production; thousands of 
rules, several layers of domain languages and 
refinements, very strong Boolean formula 
simplification) 

7) Generation of fast XML parsers from XML 
DTDs (work in progress; tens of rules) 

8) DMS Self application: 

a. Generation of fast UNICODE lexers 

b. Generation of million-line parallel partial-
order attribute evaluators, via DMS-based 
attribute evaluators 

c. Source prettyprinting 

d. Test probe insertion 

Research work using DMS is focusing on reengineering 
Web sites [Ricca02]. 

 Since DMS is neutral about the languages it processes, 
it is expected to be very useful in handling hardware design 
languages such as Verilog, and mixed language hardware-
and-software co-designs.  We have done some 
experimental work with Verilog and VHDL. 

5 Irregular parallelism and Symbolic 
computation 

Parallelism generally brings one of two models to mind: 
data parallelism and distributed computation.  Data parallel 
models are those in which there exist large bodies of data 
which can be partitioned in parts that need essentially 
homogeneous processing.  It is traditionally seen in 
physical model computations in the form of large arrays 
(e.g, a billion elements), which are partitioned into 
geometrically regular subregions and distributed across a 
number of processors, each of which processes its elements 
(typically applying only a few machine instructions per 
element, such as multiply-and-accumulate) and exchanges 
subregion edge data as needed with its assigned subregion-
edge neighbors. These processors tend to synchronize at the 
end of each conceptual processing step (such as a matrix 
multiply). 

Distributed computation tends to be seen in applications 
where the work can be statically divided into possibly 
heterogeneous parts and distributed across possibly 
heterogenous processors (some of which are designed to 
carry out their part of the computation efficiently, such as 
an FFT, or have access to a key resource, such as a 
database), which communicate as needed to manage the 
entire computation.  Both of these classes are successful 
when the computational fragments are relatively large 
compared to the communication and synchronization costs. 

There is a third class of parallelism which seems not 
widely discussed, which we call “ irregular parallelism”  
(sometimes called “control parallelism).  This class occurs 
when there is a large amount of computation to do, but the 
individual parts are heterogeneous, small to modest in size, 

(|; first  (<< second fourth) (+= x) 
    second    (= z (fib x)) 
    third  (sort (. y)) 
    fourth (>> third) (= f y:x) )|;  
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(+= x) 
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                   Figure 2: Partial order parallelism 



  

are unpredictable in advance, and require considerable 
synchronization.  Additionally, one may speculatively 
compute results (possibly in parallel), leading to the need 
for stopping useless speculative computations. 

Symbolic computation for program analysis and 
manipulation seems to fit this model well.  Here, primitive 
data elements are fragments of a program representation 
such as an abstract syntax tree node and its near children.  
Scale occurs because individual element computations can 
be expensive (pattern match, rewrite, attribute 
extraction/composition/movement), because rewriting for 
(e.g. Boolean) optimization can be NP complete, and 
because the program to be manipulated can itself be quite 
large (million-line C programs, or factory-controller code 
containing 25K complex Boolean expressions).  
Speculation can occur when searching a space of possible 
answers. 

Considerable research in irregular parallelism (without 
speculation) occurred under the rubric of “dataflow 
computation”  [Arvind93], and was the initial inspiration for 
PARLANSE.  Dataflow research focused essentially on 
hardware supporting distributed computations with 
granularity roughly matching the primitives of the 
computation (add, index, compare, etc.).  This did not lead 
to any commercially successful systems because of the 
requirement for special hardware, and the overhead 
(communication and synchronization) costs dominated the 
actual computation costs, and consequently the resulting 
computation rate was not very good.  A key insight from 

this research was the notion of controlling the size of the 
computational grain to ensure that the overhead is only a 
modest fraction of the actual computational work done, to 
achieve efficient execution. 

6 PARLANSE 

PARLANSE (a pun for “ language”) was designed to 
efficiently express irregular parallelism, and enable the 
construction of a large software systems (Thus, the name, 
PARallel LANguage for Symbolic Expression).  This 
meant trying to achieve several goals: 

1) Ensuring that the language could be compiled to 
very good code in the absence of parallelism 

2) Simplify the specification of parallelism and its 
management 

3) Integrate exception handling with parallelism 
4) Controlling grain size to aid efficient computation 
5) Providing software engineering support. 

The first issue is a “do no harm” issue.  Not every block 
of code can be highly parallel, nor can one achieve a 
meaningful speedup if one executes, in parallel, code which 
is necessarily significantly slower than that producible by 
good compilers for sequential languages.  This suggests 
that most code sequences, especially the sequential 
portions, should be competitive in performance to that 
produced by good compilers for standard languages.  As a 
consequence, we chose a “C”  like foundation for 
PARLANSE, because much of the focus of the compiler 
community is on compiling C-like languages.  Thus the 

(define merge_sort_in_place (procedure [data (reference (array SomeType 1 dynamic))]) 
  (action 
    (local 
       (|| 
          (define small_fast_sort (procedure [lower integer] [upper integer]) ... )define 
          (define merges_subsequences (procedure [lower integer]  
                                                 [midpoint integer] 
                                                 [upper integer]) ... )define 
          (define sort_subsequence (procedure [lower integer] [upper integer])procedure 
             (action (;; (ifthen (>= lower upper) (return) ); sorted subsequence 
                         (ifthen (< (- upper lower) 20)  
                            (;; (small_fast_sort lower upper) (return) );; )ifthen 
                         (local (= [midpoint integer] (// (+ lower upper))// )= 
                            (;; (|| (sort_subsequence lower (-- midpoint))sort 
                                    (sort_subsequence midpoint upper)sort 
                                 )|| 
                                (merge_subsequences lower midpoint upper) 
                            );; 
                         )local 
                     );; 
             )action 
          )define 
       )|| 
       (sort_subsequence 1 (upperbound data 1)) ; top level call on subsorting 
    )local 
  )action 
)define 

                                                               Figure  3: Parallel Sorting by Divide and Conquer  



  

language has the following constructs, which were often 
modeled initially after those in C: 

• Scalar data types: boolean, integer, 
character, float with the usual typed 
arithmetic over such values. A symbol type 
provides valueless but comparable identifiers which 
are globally unique (rather like enumeration value 
names). 

• Compound data types: static arrays, 
structures, and tagged unions.  Strings are 
simply arrays of characters.  Unlike C, arrays always 
have a known size, and there are dynamic arrays 
which can be resized at any time. 

• Reference (pointers) to any type.  Unlike C, no 
pointer arithmetic is allowed, athough one can take 
the address of a structure slot or static array element. 

• Standard side effects such as assignment and 
incrementation of variables. 

• Standard control constructs such as ifthen, 
while, do, function/procedure call, etc. 

• Functions (and procedures). Unlike C, these take an 
explicit structure as an argument; one can build an 
argument list independently of calling a function.  
Unlike C, function signatures are explicit types and 
can be defined by a source library and used by name; 
this allows us to change signatures of libraries easily.  
Unlike C, functions are first class, lexically scoped 
and can be passed as values.  Since programmers 
should not know much about sizes of values 
PARLANSE can pass arbitrarily big values to and 

from functions, and the compiler manages this 
efficiently based on the size of the result.  
PARLANSE programmers do know that it is cheaper 
to pass some values by reference.  Because 
PARLANSE is a parallel language, activation 
records are heap allocated. 

• Data access paths. Rather than complex syntax for 
array and structure access, PARLANSE simply 
simply separates access elements by a colon, e.g., 
A:B:C.  The meaning is determined by context. 

The second issue is to make parallelism easily 
accomplished by the engineer, and easily extracted from 
the application, so that the compiler doesn’ t have to 
struggle to locate it.  We chose to do this by providing two 
facilities:  a) the notion that expressions are dataflow-
parallelism by definition, b) the programmer can easily 
specify standard parallelism idioms, and actually has to 
specify sequentiality in an effort to discourage sequentially-
by-accident. 

Exception handling has proven its worth repeatedly in 
building large complex systems (like DMS).  It seems 
especially important to make exception handling work 
properly even in the presence to parallel constructs, and no 
practical language available when we started in 1996 (or 
even today to our knowledge) provides reliable exception 
handling that crosses parallelism boundaries (e.g., Java 
exceptions work only within threads). In retrospect, 
implementing exceptions in PARLANSE was one of our 
best decisions.  DMS allows parameterized exceptions to 
be declared, raised, caught, inspected, and propagated.  An 
extremely nice property is that exception handler overhead 
is exactly zero if no exceptions occur, so PARLANSE 

(define parallel_visit (procedure [tree AST:Node] 
                                  [visitor (action (procedure [node AST:Node]))] 
   (action 
      (local 
         (|| [tree_walk team] 
             (define visit_root_and_children (procedure [subtree AST:Node]) 
                (;; (do [i natural] 1 (AST:Nchildren subtree) 1 
                        (draft tree_walk 
                               visit_root_and_children 
                               (AST:NthChild subtree I) 
                        )draft 
                     )do 
                    (visitor subtree) 
                 );; 
             )define 
          )|| 
          (;; (visit_root_and_children tree) 
              (wait (event tree_walk)) ; wait for all grains to finish 
          );; 
      )local 
    )action 
)define 
            …   ( par al l el _vi s i t  my_t r ee ( act i on ( pr ocedur e [ node AST: Node] )  
                                                ( r ewr i t e node r ul es)  

                                        ) act i on ) par al l el _vi s i t           Figure  4: Parallel Tree Walk and 
Parallel Rewriting 



  

applications often use exceptions instead of explicit 
comparions  to efficiently handle rare cases. 

Simply being able to specify parallelism does not help 
if the grain size is too small (causing too much context 
switching time overhead) or too large (not enough 
parallelism to win).  However, only the compiler is likely to 
have a really good idea of what the proper grain size is on 
an architecture.  As a consequence, parallelism in 
PARLANSE is often advisory (“potential parallelism”) 
rather than mandatory, and the compiler is allowed to 
coalesce parallel computations as it sees fit.   So while 
PARLANSE has computation grains as explicit entities, 
often parallelism is not specified for grains, but rather for 
code, and the compiler handles all the grain management in 
such cases.   The principal means by which this is achieved 
are the “potential parallel”  construct and its generalization, 
the “partial order”  construct.  The current compiler does not 
coalesce grains, but heavy use of the potential parallelism 
construct leaves the next compiler free to do as it sees fit.  

What we have done is to arrange for the compiler to 
manage much of the implicit grain initialization and context 
switching.  This enables the current PARLANSE compiler 
to create, schedule, run, stop, and destroy a grain with some 
30 machine instructions.  Consequently a block of 60 
machine instructions in a grain can allow a 2 processor 
system to outperform a single processor system. 

Good software engineering support can make building a 
large system easier and more manageable.  Besides 
exception handling, PARLANSE offers modules, name 
space management, and good debugging facilities.  
Modules allow sets of named PARLANSE entities to be 
grouped into conceptual packages, with public and private 
definitions.  PARLANSE provides nested name spaces with 
lexical access even for passed function values. 

By providing assertion statements (trust)that are 
automatically converted into runtime tests by a compile-
time debug switch, we made it easy for programmers to 
state checkable constraints.  In addition, the compiler 

(define parse_file_set (procedure [files (array (reference string) 1 dynamic)]) 
  (action 
    (local (|| [live_parsers team] 
               (= [parsed_files HashTable] ; atomically updateable hash table  
                  (InitializeHashTable (action (procedure reference HashTableEntry)) 
                                               (= ?:parsed ~f) ; initialize slot to false 
                                       )action 
                  )InitializeHashTable )= 
               (define parse_file (procedure [file (reference string)]) 
                  (local (= [needs_parsing boolean] false) 
                     (;; (Update parsed_files file 
                            (action (procedure (reference HashTableEntry) 
                                    (ifthen (~ ?:parsed) 
                                       (|| (= ?:parsed ~t) (= needs_parsing ~t)  )|| 
                                    )ifthen 
                            )action )Update 
                         (ifthen needs_parsing 
                            (local [= [tree Node](Parse file)) 
                               (AST:ScanNodes tree 
                                  (procedure [node Node]) 
                                    (ifthen (IsIncludeFile node) 
                                       (draft parse_file (IncludeFileName node)) 
                                    )ifthen 
                                  )procedure 
                               )AST 
                            )local 
                         )ifthen 
                     );; 
                  )local 
               )define 
           )|| 
       (;; (do [i integer] 1 (upperbound files 1) 1 
               (draft live_parsers parse_file files:i) ; put these files into work list 
            )do 
            (wait (event live_parsers)); wait for all parsers done 
       );; 
    )local 
  )action 
)define  
                                                               Figure  5: Parsing Many Source Files in Parallel 



  

inserts array range checks, invalid pointer checks (but not 
dangling pointer checks), and verifies that union tags are 
set properly when union accesses are made.  Well-written 
PARLANSE codes tend to have such assertions every 10 
lines or so, and violations of the assertions produce source 
location information directly.  We find most bugs by 
reported assertion violations.  We plan to add pre and 
post conditions to function signatures in the future. 

Dynamic storage is a necessary curse in symbolic 
programs.  You must have it, and you must clean up 
afterwards.   We chose not to have a garbage collector, 
because in 1996 nobody knew how to build a parallel one 
and we could not risk the DMS project fate on an un-
implementable idea (to date, there are still very few 
practical parallel garbage collectors, and they only exist in 
research systems).  Instead, we provide the usual primitive 
facilities of new and free, adding the notion of a 
referenceable storage pool from which a new can be 
performed, and which can be freed as a unit.  A pool is 
generally created when a subcomputation starts, and 
released when finished, so “ leaks”  of storage with respect 
to the pool are only transient effects.  We believe this idea 
will still be useful, and certainly does not stand in the way 
of an eventual garbage collector.  For many list-
construction tasks where the list is modest size, our low-
overhead dynamic arrays have turned out to be 
spectacularly useful and efficient. 

PARLANSE has some other unusual properties.  It 
distinguishes between values and entities.  Values can be 
copied, processed, and compared for at least equality, and 
for which one cannot construct a reference.  Entities are 
individually unique, to which only entity-type-specific 
operators can apply, always including “construct a 
reference” .  A classic entity found in most languages is the  
variable, which has operations to fetch and store its 
value.  Other entity types represent items managed by 
PARLANSE such as pools,  individual parallel grains 
of execution, and semaphores.  The new operator can 
dynamically create new entities as needed. 

The language is entirely based on UNICODE, allowing 
UNICODE strings and names.  In symbolic computation 
for arbitrary domains, it is convenient to name things they 
way the domain names them; if the language naming 
convention insists on a fixed character set, then some 
domains will have names that are difficult to express.  
PARLANSE allows identifier names to be arbitrary strings 
by use of judicious escape characters.  Thus grammar token 
names, no matter how spelled, can be easily written in 
PARLANSE. 

The oddest quirk is probably the LISP-like notation we 
chose to use for PARLANSE.  All language forms have the 
syntax 

 (keyword  form1 form2 … formN)keyword 

The idea was to avoid the usual endless language-design 

nested_class_declaration = nested_class_modifiers class_header class_body ; 
<<BuildSymbolTableFrame>>: 
     { 
       IF nested_class_declaration[0].entity_kinds == MemberClassInInterface THEN 
          nested_class_declaration[0].modifiers =  
            AddOneModifierToModifiers(AddOneModifierToModifiers(nested_class_modifiers[1] 
                     .modifiers,ModifierPublic),ModifierStatic); 
       ELSE 
          nested_class_declaration[0].modifiers = nested_class_modifiers[1].modifiers; 
       ENDIF; 
       class_body[1].symbol_space =  
             CreateChildSymbolSpaceOf(nested_class_declaration[0].symbol_space,+1); 
       AddToNodeToSymbolSpaceMap(class_body[1].,class_body[1].symbol_space); 
       class_body[1].constructors = CreateSymbolSpace(); 
       class_body[1].wrapper_declaration =  
   AddClassSymbolToSymbolSpace(nested_class_declaration[0].symbol_space,  
          class_header[1].simple_name,  
          MemberClass, 
          class_header[1].node, 
          nested_class_declaration[0].modifiers, 
          VoidType,  
          VoidSignature, 
          class_body[1].constructors, 
          class_body[1].symbol_space, 
          nested_class_declaration[0].wrapper_declaration); 
       class_body[1].label_space = nested_class_declaration[0].label_space; 
       AddToNameResolutionTable(class_header[1].node,class_body[1].wrapper_declaration, 
                                false); 
     } 
                        Figure  6: Attribute Grammar Evaluator Specification to Process Java Class Header 



  

arguments about what punctuation to put where.  In 
retrospect, we traded it for an argument about what 
keywords to put where; fortunately, the supply of keywords 
can be vast and so we never ran out of “punctuation” .  The 
trailing keyword is optional and is called “coloring” ; if 
present, the compiler insists it match the opening keyword, 
thus catching most nesting errors easily.  Well-formed 
PARLANSE programs are like rainbows with matching 
colors on each end. 

6.1 Primitive parallelism: gr ai n 

A parallel language must have some unit of dynamic 
execution, which in PARLANSE is a grain.  Operations 
on grains include: 

• (spawn function data) spawn creates a new grain 
executing function on the constructed function 
argument data., and returns a reference to a new 
grain.  

• (wait (event grain))  The invoker waits until 
the grain completes execution. 

• (abort grain)  The grain receives an 
asynchronous abort exception, forcing it to clean up 
and finish. 

• (doom grain)  The designated grain is told to 
destroy itself after completion; no further attention to 
it is needed. 

PARLANSE offers the classic semaphore with lock 
and unlock operators which we do not discuss further.  
More interesting are events, which can be signaled to 
indicate the occurrence of an significant action, and 
waited upon for such a signal.  Once signaled, further 
waits cause no delays.  The operation (event grain) is 
simply a means to obtain a reference to the event associated 
with a grain’s completion.  Events having values can 
participate in expressions as operands, and provide a direct 
means to implement certain dataflow computations. 

Given grain operations (including new and free) and 
just semaphores, one can program, with enough effort, 
arbitrary dynamic parallel systems.  This is essentially the 
services provided by an OS threads package,  albeit more 
efficiently because of careful code generation by the 
compiler.  It still has the disadvantage of relatively high 
overhead over other PARLANSE mechanisms. 

All the operations on parallel entities happen 
atomically, so there are entire classes of errors one cannot 
make in PARLANSE that could occur with a conventional 
threads package (e.g., this thread is aborted halfway 
through the process of aborting another thread itself).  We 
have no further space to discuss this here, but PARLANSE 
has considerably more machinery for managing this. 

The PARLANSE compiler and runtime system 
cooperate to ensure that no more than an adequate supply 
of grains exist at any one moment, to avoid the problem of 
having unbounded parallelism consume unbounded space.  
Built in time-slicing also ensures that arbitrary parallel 
execution succeeds even on single processor machines. 

6.2 Parallelism with purpose: t eam 

A team entity represents a set of grains (or subteams) 
forming a parallel computation with an implicit purpose.  
Its value is in its use to manage the execution and/or 
termination of the entire parallel computation associated 
with that purpose.  A new team  starts with an empty set 
of member grains. 

• (draft team function data)  A new grain is 
spawned executing function on data.  The grain is 
added to the team, and then doomed.. 

• (wait (event team))  The invoker waits until 
all grains in the team have completed. 

• (abort team)  Each grain in the team receives an 
asynchronous abort exception. 

Teams provide a more structured approach to managing 
sets of grains than provided by standard thread packages.  
In particular, teams enable a manager computation to wait 
for a team result without knowing how many team 
members exist, or how/when those team members came to 
be (including being started by other team members!).  It 
also enables speculative computations to be clearly grouped 
and easily stopped if later deemed inappropriate. 

6.3 Statically scheduled teams 

Dynamically constructed and managed parallelism is 
general, but has relatively high overhead.  It is often 
convenient to harness statically-determinable parallelism. 
The PARLANSE compiler can manage this more 
efficiently precisely because it knows more, enabling it to 
issue instruction sequences to efficiently initialize, enque, 
and destroy the grains representing the static team. 

Sequential code is the limiting case of a conceptual set 
of grains  occurring in a serial order, and is coded as: 

          (;;  code1  code2   codeN );; 

for arbitrary blocks of code. 

Potential parallelism declares that the set of 
computations can be executed in any order (including 
serially) and the result is acceptable.   The compiler can 
ignore this parallel construct if the computations are too 
small.  It is coded as 

          (||  code1  code2   codeN )|| 



  

Partial order parallelism shows necessary ordering 
relations between computations to achieve a desired effect.  
Each computation gets a label and an optional ordering 
relationship in time (<< before or >> after) with respect to 
other labels in the partial order. 

          (;|  labe1l (<< labels)  code1  

                   label2   code2 

                   labelN  (>> labels) codeN   );| 

Figure 2 shows the smallest partial order that cannot be 
coded with pure potential parallelism and sequentiality. 

Partial order parallelism is also potential parallelism, 
because the computations can be ordered linearly and 
executed that way with no parallelism.  It generalizes both 
sequential and potential parallism trivially. 

7 Symbolic Parallel Applications 

In this section, we briefly exhibit a number of parallel 
computations implemented in PARLANSE. All of these 
examples have run on 1 to 8 way SMP Wintel systems. 

7.1 Parallel sorting 

A parallel merge sort is shown in Figure 3.  It uses 
potential parallelism to recursively divide and conquer the 
problem, by sorting both halves of a list, and then merging 
the sorted parts.  Note the lexical scoping allows the 
recursive procedure to access the data array implicitly. 

7.2 Parallel Tree Walk and Rewriting 

Following the divide and conquer theme, Figure 4 
shows a parallel tree walk, applying a visitor function 
bottom upwards.  In the bottom of the figure, we invoke the 
tree walk, passing an anonymous procedure (action) as 
the visitor function that calls a rewriting engine with a set 
of rewrite rules, to apply those rules to the action’s tree 
node argument.  This implements bottom-up parallel 
rewriting. 

7.2 Parallel Parsing 

DMS is asked to parse software systems with thousands 
of files, often by giving it some source file subset which 
requires it to also recursively parse the include files 
mentioned by those sources.  The code in Figure 5 
accomplishes this.  Since the number of source files is 
unknown, we employ a team to carry out the collective 
work.  Each spawned subparser parses its designated source 
file, then inspects its tree for include nodes, and spawns 
children parsers as needed.   The hashtable tracks which 
files have been requested for parsing, to avoid repeated 
parses.  While not shown, the hashtable module is access 
and update safe for parallel threads. 

7.3 Parallel Attribute Grammar Evaluation 

Analysis of tree-structured artifacts can often be 
conveniently implemented using attribute grammars.  DMS 
offers an attribute grammar evaluator to the analysis 
engineer.  A useful analysis is the construction of a symbol 
table.  Figure 6 shows a single attribute grammar rule for 
processing a Java class header.   A DMS attribute rule 
passes (computed) values up and down the tree, and may 
also cause side-effects, such as updating the symbol table 
with the class name and type.  The DMS Attribute 
Grammar Evaluator tool does a data flow analysis of the 
attribute rule computation, automatically determines a 
partial order that will effect the attribute rule, and 
synthesized PARLANSE code shown in Figure 7, with 9 
partial order steps and up to 5 simultaneous units of 
parallelism  

Our COBOL NameResolver is some 15000 lines of 
attribute grammar.  The DMS attribute rule evaluator 
produces some 800,000 lines of partial order PARLANSE 
code to implement it.  We believe this to be one of the 
largest parallel programs on the planet.  It is in daily use. 

7.5 Other Parallel applications 

PARLANSE has been applied to a number of other 
parallel applications, which we can only mention here for 
space reasons: 

• Clone Detection on 1.5 million lines systems 

• Java Name and Type Resolution (above the attribute 
grammar level), which pipelines symbol table 
construction. 

• Fast interactive determination of selected graphical 
object on complex displays by recursive space 
partitioning. 

• Parallel rendering of software engineering diagrams 
with several thousand nodes [Quigley02]. 



  

8. Summary 

This paper has discussed how symbolic computation on 
scale needs parallelism.  An overview of an industrial 
strength, large-scale transformation system, DMS, was 
provided as a motivating example. The DMS 
implementation language, PARLANSE, is a parallel 
programming language that provides facilities for irregular 
parallelism as found in symbolic applications.  We 
exhibited a number of running parallel programs used for 
various symbolic computations inside DMS. 

We have preliminary numbers showing that indeed we 
are achieving some of the desired parallelism.   While we 
have not achieved maximal parallelism under most 
circumstances, we think this is more a tuning problem than 
a fundamental technology problem.  Being able to construct 
a reliable system as complex as DMS with parallelism is a 
fundamental step towards actually harnessing it. 
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( ; |  
  po1 
    ( i f t henel se 
      ( == 
 _n0_: cont ent s: val ue: at t r i but es: ent i t y_ki nds 
 Ent i t yKi nds: Member Cl assI nI nt er f ace)  
      ( l ocal  
 ( = [ _n1_ _Node_]  ( _cr eat e_at t r i but es_f or _exi st i ng_chi l d_ _n0_ 2) )  
 ( ; ;  
   ( ; ;  
     ( _eval uat i on_pr ocedur es_: ( _get _eval uat i on_pr ocedur e_i ndex_f or _node_ _n1_)  _n1_)  
     ( =  
       _n0_: cont ent s: val ue: at t r i but es: modi f i er s 
       ( Modi f i er s: add_one_modi f i er _t o_modi f i er s 
  ( Modi f i er s: add_one_modi f i er _t o_modi f i er s 
    _n1_: cont ent s: val ue: at t r i but es: modi f i er s 
    Modi f i er s: Publ i c)  
  Modi f i er s: St at i c) )  
   ) ; ;  
 ) ; ;  
      ) l ocal  
      ( l ocal  
 ( = [ _n1_ _Node_]  ( _cr eat e_at t r i but es_f or _exi st i ng_chi l d_ _n0_ 2) )  
 ( ; ;  
   ( ; ;  
     ( _eval uat i on_pr ocedur es_: ( _get _eval uat i on_pr ocedur e_i ndex_f or _node_ _n1_)  _n1_)  
     ( =  
       _n0_: cont ent s: val ue: at t r i but es: modi f i er s 
       _n1_: cont ent s: val ue: at t r i but es: modi f i er s)  
   ) ; ;  
 ) ; ;  
      ) l ocal  
    ) i f t henel se 
  po3 
    ( =  
      _n3_: cont ent s: val ue: at t r i but es: symbol _space 
      ( Cr eat eChi l dSymbol SpaceOf  
 _n0_: cont ent s: val ue: at t r i but es: symbol _space 
 +1) )  
  po8 
    ( =  
      _n3_: cont ent s: val ue: at t r i but es: const r uct or s 
      ( Cr eat eSymbol Space) )  
  po13 
    ( _eval uat i on_pr ocedur es_: ( _get _eval uat i on_pr ocedur e_i ndex_f or _node_ _n2_)  _n2_)  
  po10 ( >> po1 po3 po8 po13)  
    ( =  
      _n3_: cont ent s: val ue: at t r i but es: wr apper _decl ar at i on 
      ( AddCl assSymbol ToSymbol Space 
 _n0_: cont ent s: val ue: at t r i but es: symbol _space 
 _n2_: cont ent s: val ue: at t r i but es: s i mpl e_name 
 Ent i t yKi nds: Member Cl ass 
 _n2_: cont ent s: val ue: at t r i but es: node 
 _n0_: cont ent s: val ue: at t r i but es: modi f i er s 
 Types: Voi dType 
 Types: Voi dSi gnat ur e 
 _n3_: cont ent s: val ue: at t r i but es: const r uct or s 
 _n3_: cont ent s: val ue: at t r i but es: symbol _space 
 _n0_: cont ent s: val ue: at t r i but es: wr apper _decl ar at i on) )  
  po17 
    ( =  
      _n3_: cont ent s: val ue: at t r i but es: l abel _space 
      _n0_: cont ent s: val ue: at t r i but es: l abel _space)  
  po5 ( >> po10 po17)  
    ( _eval uat i on_pr ocedur es_: ( _get _eval uat i on_pr ocedur e_i ndex_f or _node_ _n3_)  _n3_)  
  po7 ( >> po3)  
    ( AddToNodeToSymbol SpaceMap 
      _n3_: cont ent s: key: node 
      _n3_: cont ent s: val ue: at t r i but es: symbol _space)  
  po20 ( >> po10)  
    ( AddToNameResol ut i onTabl e 
      _n2_: cont ent s: val ue: at t r i but es: node 
      _n3_: cont ent s: val ue: at t r i but es: wr apper _decl ar at i on 
      ~f )  
) ; |  

                                                  Figure  7: PARLANSE code generated from Attribute Rule 



 

 


