
 © Semantic Designs, Inc. 1 9/28/2017

Supporting Forward and
Reverse Engineering with
Multiple Types of Models

Ira Baxter, Ph.D., CEO/CTO

idbaxter@semanticdesigns.com

Thursday, September 21st

Models 2017 Keynote

Austin, Texas

 © Semantic Designs, Inc. 2 9/28/2017

Software Engineering

State of the Art for Program Construction

• Deep Semantic Theory

• Requirements Capture and Traceability

• Formal Specifications in Domain Specific
Languages or Models

• Mature Technologies: RDB, RPC, GUIs, …

• Modern languages with exceptions, generics,
parallelism, …

• Automated Test Generation

• Configuration Management Tools

• Software Engineering Process and Methods

• Model-driven engineering

 © Semantic Designs, Inc. 3 9/28/2017

Model Driven Engineering

Software Development Problem Solved!

• Write a Model of a Desired Program

• Run the off-the-shelf Model-to-Code Generator

• Run Generated Code in Production

• Done!

 © Semantic Designs, Inc. 4 9/28/2017

Problem 1: How Does This work?

Step1

Step2

Step3

 © Semantic Designs, Inc. 5 9/28/2017

Modelling Background

(2017) Starr, Mangogna, Mellor (2017) Brambilla, Cabot, Wimmer

“With No

 Mysterious Gaps”

 © Semantic Designs, Inc. 6 9/28/2017

One MDE View

(2017) Starr, Mangogna, Mellor (2017) Brambilla, Cabot, Wimmer

• (to produce code) “Model … must be

executable (page 26)” No!

• ExecutableUML as typical model

• Distinguishes concrete vs abstract syntax,

semantics … but no discussion of latter

• Emphasizes (concrete) graphical models

syntax = model conformance

• Emphasizes simple model of generation:

M2M (optional) then M2T

• M2M as graphical model to graphical model

transforms (Refinements)

• Code generation via Model2Text

 Size of semantic gap from Model to target

• Some references “graph transformation”

literature

 © Semantic Designs, Inc. 7 9/28/2017

Alternate MDE View

(2017) Starr, Mangogna, Mellor (2017) Brambilla, Cabot, Wimmer

“With No

 Mysterious Gaps”

• Shows one approach in detail

• ExecutableUML as “the model”

• Classes with data elements

• Statecharts as class-transition

descriptions with signals to other class-

statecharts

• Abstract actions to navigate class

relations, side-effect class data

• Text encoding of concept xUML into

 Pycca syntax

• Actions as explicit C code fragments

• Data declarations as C code fragments

• Pycca M2T generator produces

• C structs for classes

• FSA per class with continuations used

to signal to other class-FSAs

• No mysterious gaps … 283 pages

 but pretty weak generator

 where did Pycca come from?

 © Semantic Designs, Inc. 8 9/28/2017

Model Driven Engineering

Software Development Problem Solved?

• Write a Model of a Desired Program
• Where did my modelling notation come from?

• What does it mean?

• How did I get it into the computer?

• Is it complete wrt Functionality? Performance?

• Does my model mean what I think it means?

• Run the off-the-shelf Model-to-Code Generator
• What machinery reads the model?

• What is my choice of code targets? Is it only one language/technology?

• How are model transformations specified?

• How are they sequenced and executed?

• How do I know they are right? Complete?

• How long does code generation take to run?

• Run Generated Code in Production
• Does the generated code need runtime support?

• How do I debug problems using modelling terms?

• Done?
• Success breeds discontent: user needs change, external context changes

• How do I modify my model in an organized way to respond to these demands?

• Do I regenerate all the code again, even for the parts of the model that don’t change?

Problem 2

Problem 3:

Maintenance

 © Semantic Designs, Inc. 9 9/28/2017

How do these tools really work??

• MDE suggests “models” and “transforms” but not a lot of detail
• Generated systems seem rather “small”

• Where is the theory?

• How to improve it?

• We need a different model of model driven engineering!

• => Program Transformations
• General “model” of specifications: any formal artifact

 …. don’t have to executable or complete

• Can define meaning of specifications using a variety of formalisms

• Transforms as functions on specifications composable

realized in a wide variety of ways

• Correctness as preservation of properties by transforms

• Ability to operate at same level of abstraction or many levels of abstraction

• Metaprogramming to realize design choices

• Ability to produce large systems

• Ability to choose a variety of different implementations

• Ability to operate on “Text” part of M2T

• Perspective to define reverse engineering

 © Semantic Designs, Inc. 10 9/28/2017

Background: Semantic Designs

• Automated Software Engineering Tools since 1996

• All tools derived from single Program Transformation Engine:

 DMS® Software Reengineering Toolkit

• Focus on legacy code analysis/transformation

• DMS based on 3 key foundations

• Compiler Technology developed over last 50 years, generalized

• Mathematical notion of A=B realized as mechanical program transformations

• Scale support: large size, many languages, parallel computation for inference

• Some DMS tasks

• Analysis of code structures at ANZ Bank (16MSLOC COBOL)

• 100% fully automated migration of B-2 Stealth Bomber Mission Software

• Rearchitect large C++ applictions in CORBA/RT compatible structure

• Extraction of process-control models from legacy assembler code for Dow Chemical

 © Semantic Designs, Inc. 11 9/28/2017

DM

S

Grammar
Rules

Parse Analyze

Rule

Compiler

Transform Format

Target Language
Formatting Rules

Program
Understanding
Rules

Rewrite Rules

Grammar
Rules

Parse Analyze

Rule

Compiler

Transform Format

Target Language
Formatting Rules

Program
Understanding
Rules

Rewrite Rules

Compiler data structures

Analysi

s

Focus

Custo

m

Report

s

DMS

Grammar
Rules

Parse Analyze

Rule

Compiler

Transform Format

Program
Understanding
Rules

Rewrite Rules

Grammar
Rules

Parse Analyze

Rule

Compiler

Transform Format

Target

Language
Formatting

Rules

Program
Understanding
Rules

Rewrite Rules

Compiler data structures

Analysi

s

Focus

Custo

m

Report

s

Source

Language

Files
(many files,

 multi-lingual)

Domains

 == Language Definitions
•(Grammar Rules + General Analysis Rules +

Formatting Rules
for many languages or custom, including

• C++

• C#

• HLASM

• HTML

• Java

• Natural

• SQL

Target

Language

s

Task

Definition
(Task Specific

Analysis and

Transformation

Rules)

Analysis

Results

Understanding

✓ Language parsers

✓ Compiler data structures

✓ Deep data flow analysis

✓ Data flow concept matching

Transformation Engine

✓ Source Code Patterns

✓ Source Rewrite Rules

✓ Condition on analysis results

Designed for the real world

✓ Millions of lines

✓ Thousand of files

✓ Mixed languages

✓ Parallel processing

✓ Full Unicode/Native char sets

✓ Actively used and enhanced
for over 20 years

DMS Software Reengineering Toolkit

Factory
Configuration

Constant set of program manipulation services

Case Study: Large Banking System

Analyze: How are software elements connected?

Business Challenge: Programmers create new defects when making application changes

• Unhappy Customers (ATMs went offline for a day)

• Escalating maintenance costs

Technical Problem: Code and data dependencies obscured by application (Hogan) architecture

• 16+ Million lines of IBM Enterprise COBOL, JCL extended by Hogan

• 15,000 software components

Solution: DMS custom analyzer visualizing Component Connectivity

• Define custom parser for Hogan to DMS

• Parse COBOL, JCL, Hogan DBs

• Compute interconnections

• Graphically display connections

Benefit: Impact/change analysis now possible

U.S. Social Security Administration:

Same Problem but 200M SLOC!

Now in use for 3+ years

Case Study: B2 Bomber Mission Software

Change: 100% Automated Migration Jovial to C

Business Challenge: Existing B-2 Mission software incapable of meeting new requirements

• Legacy JOVIAL software needed to be modernized

• Internal teams unable to re-write application

Technical Problem: Legacy Software Complexity

• Failed internal manual and semi-automated translations

• 1.2 million lines Black code; SD not allowed to see source

Solution: Migrated 100% by DMS

• Define JOVIAL language from scratch to DMS

• Reuse existing definition for C target language

• ~6000 translation rules

• Delivered in 9 months

•Benefit: Trustworthy solution for critical software

Operational in

 B2 Bomber fleet

Case Study: Avionics Software

Change: OS replacement/Architectural shift

Business Challenge: Highly successful C++ product line for many Boeing military aircraft

• Hundreds of C++ components,

 communicating on limited-bandwidth internal aircraft data bus

• Military wants to add video cameras to all aircraft

• Internal bus overwhelmed; desperately need QoS data delivery guarantees

Technical Challenge: Replace legacy Boeing RTOS (no QoS) with CORBA/RT (QoS)

• Too big to do by hand: millions of SLOC

• Code architecture must change radically to match CORBA requirements

Solution: Mass change to replace legacy OS calls

 then rearchitect

• Define C++ and Facet spec description to DMS

• Add rules to map legacy OS calls to CORBA

• Add rules to reshape code into “facets”

Benefit: 98% automated conversion of components

 Savings of 1-2 man-months per component

Some plants now converted New video components in UAV

in live-fire exercise demo

Case Study: Chemical Plants

Change: Model/Migrate Software Running Manufacturing Process

Business Challenge: Trusted plant-controller computers starting to fail due to age

• Many different plants / Thousands of control programs

• Software had to be migrate to modern controller hardware

• Limited resources and time

Technical Challenge: Manual conversion impractical for scale

• Can’t be wrong or factory may “blow up”

• Assembly like language difficult to analyze

Solution: Automated Tool to recover abstract process control model from “assembly code”

• Define Dowtran from scratch to DMS

• Define abstractions in terms of data flows with conditional implementations

• DMS matches legacy code via data flows (“Programmer’s Apprentice”) to produce

model

• Generate new controller code from model

Benefit: Reliable migration of safety critical software + huge cost savings + design capture

Some plants now converted

 © Semantic Designs, Inc. 16 9/28/2017

To a first order approximation,
there’s no such thing as “new code”.

There’s only code
 somebody else wrote yesterday,

that you want to change.

 © Semantic Designs, Inc. 17 9/28/2017

Software Engineering

State of Software Maintenance practice

• Theory: How to modify it?
– How to describe a change?

– Where to look for place to start?

– How to make change?

– How verify change?

– How to verify rest of system?

• Practice: Key Problems
– No specification

– No design documents one can trust

– Growing scale

– No repeatable tests

– Scar tissue from repeated hacking

• How are these systems going to have long lives?

?

 © Semantic Designs, Inc. 18 9/28/2017

How do we reconcile

MBE and Software Maintenance?

• We need a model of software construction

• Then we need a model of maintenance deltas wrt construction
– How to specify?

– Where to look for place to start?

– How to make change?

– How to determine parts of code that are inconsistent with desired change?

– How verify change?

– How to verify rest of system?

 © Semantic Designs, Inc. 19 9/28/2017

So Why the Maintenance Mess?

• System has a Design

– Problem Domain

– Implementation Steps

– Components, connections

– …what else?

• Consult Design for Guidance

– Done!

• Ooops. I forgot the Design!

– maybe didn’t know how to save it

 © Semantic Designs, Inc. 20 9/28/2017

Conventional Designs

are just Artifact Projections

• Don’t explain all properties of artifact

• Don’t provide rationale for chosen structure

• Wrong to call these “designs”... perspectives?

Dataflow
Structure
Chart

Interfaces

Artifact

*struct find(string)

real average (int,int)

Insert(*struct,*tree)

 …

 © Semantic Designs, Inc. 21 9/28/2017

Better Model of Design?

Transformational Explanation

• Based on transformational program generation

• Components:

– Formal Specification

• Functionality (what program does)

• Performance (other program properties: size, speed, OS, languages)

– Properties of the program, not the construction process

– Transformation steps converting spec into code

• Carry out implementation of Functionality fragments

– Rationale for how steps contributes to desired performance

• Direct contribution: optimizations, refinements

• Indirect contributions: problem decomposition, solution preparation

• Rejected Alternatives

 © Semantic Designs, Inc. 22 9/28/2017

Stepwise Semiautomatic Conversion of Specs to Code

Transforms

aka “Rules”

Spec
Prog Transform

Engine
ci

fS
fG Rqmts

Key Technology:

Transformation Systems

fS

(x-1)y

 +2y

t1

distributive

law

f1

(xy-1y)

 +2y

tk-1

like-term

combination

fk

xy+y

tk

factoring

fG

(x+1)y

t2

unity

multiplier

xy-y+2y

fk-1

remove

parentheses
tk-2

...

 © Semantic Designs, Inc. 23 9/28/2017

x+0 x

What is a transform?
A partial function from specs/programs to specs/programs

Often represented as a rewrite rule with pattern variables:

optimization

refinement

Procedural: Compilers, YACC, VLSI synthesizers, refactorings

eliminate-additive-identity:

implement-sum:

sum(var,limit,vector)

 begin local s=0,var;

 do var=1 to limit;

 s=s+vector(var); enddo

 return s

 end

t: Spec Spec

t(Locator): Spec Spec MDE world

Incredibly useful

 © Semantic Designs, Inc. 24 9/28/2017

The design space

caused by multiple transformation choices

(* Symbolic Model *)

Application = Wavepropagation;

ModelType = StressStrain;

Medium = Acoustic,

Boundaries = Absorbing

Dimensionality = 2;

(* Target Properties *)

TargetLanguage = Fortran77;

1am.inFile = “1am.grd”;

(* Algorithm *)

AlgorithmClass = FiniteDifference;

FDMethod = ExplicitMethod;

BoundaryMethod = Taper,

DefaultOrder = 2;

(* Program *)

InlineQ = False;

Sinapse Specification of 3D Sonic Wave Modelling Code
[Kant92: Synthesis of Mathematical Modeling Software]

10,000 lines of CM Fortran

Design

Choices

D
e
p
th

 >
=

 1
0
0
0
0

Same function,

different performance

 © Semantic Designs, Inc. 25 9/28/2017

Design Space Navigation

How to make implementation decisions?

• Huge number of intermediate states

• At each intermediate state many

transforms are applicable

• How does machinery choose the

“right” transformations to apply?

• How do we provide guidance?

(“metaprogramming”)

D
e
p
th

 >
=

 1
0
0
0
0

MDE world often seems to offer only one choice

 © Semantic Designs, Inc. 26 9/28/2017

• Not always practical to refine specification as monolith
– so must “refine” parts of spec “independently”

– must have separate “refinements” for parts (component transforms)

– what guarantees that set of component transforms forms a refinement?

• Example:
– Want to refine stack spec having push and pop actions

– “Refine” push by adding new cell to linked list

– “Refine” pop by decrementing pointer to array

– Resulting program obviously doesn’t work!

– The pair push linked list & pop array is not a refinement

• Must some how bundle sets of transforms as a consistent refinement

The Consistent Refinement Problem

Huge

Spec
 ?

What single
refinement?

component

composed

refinement

 © Semantic Designs, Inc. 27 9/28/2017

The Draco Paradigm1

DSLs and design space navigation
• Define a DSL

– A Notational system for describing problems or solutions
with shared agreement on meaning among domain experts

– Tension between ease of problem specification
and ability to achieve efficient implementation

• ==> Sometimes contain implementation hints

• Specify application in DSL

• Repeat

– Apply optimizations at DSL level

• Uses domain-level knowledge lost in next step

• Multiple optimizations added as knowledge as convenient

– (Consistent) Refinement to lower DSL levels

• Introduces implementation methods

• Multiple refinements provide different results/performance

• Stop when final set of DSLs is executable

1 [Neighbors78] Source of the term "domain analysis"

 © Semantic Designs, Inc. 28 9/28/2017

A Domain Network (for Sinapse)

Matrix

Arithmetic

OOP

C++

Specific

Applications

Generic

Applications

Computer

Science

Execution

Model

Target

Execution

Sonic Wave

Modelling

PDEs + boundaries

Discretized

Equations

optimize

optimize

optimize

refine

refine

refine

A bundle of transforms

 that are consistent

Specific

Applications

Generic

Applications

Computer

Science

Execution

Model

Target

Execution

 © Semantic Designs, Inc. 29 9/28/2017

A Reusable Domain Network

Matrix

Arithmetic

OOP

C++

Electronic

Funds

Transfer

Money

Management

Data

Structures

Specific

Applications

Generic

Applications

Computer

Science

Execution

Model

Target

Execution

Sonic Wave

Modelling

PDEs + boundaries

Punch

Press

Control

Fighter

Aircraft

Navigation

Discretized

Equations

Real

Time

Control

Global

Navigation

Parallelism /

Distributed

Computation

Logic Functional
Data

Flow

Prolog Haskell Occam

optimize

optimize

optimize

refine

refine

refine

 © Semantic Designs, Inc. 30 9/28/2017

Domain Transformations
 on specification define
 Huge Implementation
Space

f916

f
S

f1

f2

fG

t1
a

t2
b

t3
c

t4
d

> 10K

steps!

Navigating the implementation space using Domains

Give control of

this space to the

Application engineer

 © Semantic Designs, Inc. 31 9/28/2017

Design = details from Abstract Implementation Space

=> specification, transforms, choices

(* Symbolic Model *)

Application = Wavepropagation;

ModelType = StressStrain;

Medium = Acoustic,

Boundaries = Absorbing

Dimensionality = 2;

(* Target Properties *)

TargetLanguage = Fortran77;

1am.inFile = “1am.grd”;

(* Algorithm *)

AlgorithmClass = FiniteDifference;

FDMethod = ExplicitMethod;

BoundaryMethod = Taper,

DefaultOrder = 2;

(* Program *)

InlineQ = False;

Sinapse Specification of 3D Sonic Wave Modelling Code
[Kant92: Synthesis of Mathematical Modeling Software]

10,000 lines of CM Fortran

Implementation

Steps (1000s of

transforms)

Design

Choices

 © Semantic Designs, Inc. 32 9/28/2017

D

e

r

i

v

a

t

i

o

n

H

i

s

t

o

r

y

f 0

f 1

f 2

f 3

f 4

f 5

f 6

f G

(* Symbolic Model *)

Application = Wavepropagation;

ModelType = StressStrain;

Medium = Acoustic,

Boundaries = Absorbing

Dimensionality = 2;

(* Target Properties *)

TargetLanguage = Fortran77;

1am.inFile = “1am.grd”;

(* Algorithm *)

AlgorithmClass = FiniteDifference;

FDMethod = ExplicitMethod;

BoundaryMethod = Taper,

DefaultOrder = 2;

(* Program *)

InlineQ = False;

Sinapse Specification of 2D Sonic Wave Modelling Code
[Kant92: Synthesis of Mathematical Modeling Software]

Implementation Steps

(1000s of program

transforms)

10,000 lines of CM Fortran

x+0 x

rho (continuous)

rho (1000:1000:.001)

Paradigm: Design Capture

= spec, transforms, …

rho (1000:1000:.001)

 …array of row ptrs…

 © Semantic Designs, Inc. 33 9/28/2017

• Transformational Design

– Functionality Spec (f0) + Derivation

– + Performance Spec (Grest)

+ Justification + Alternatives

• Metaprograms to construct design

– Goal driven transform application

Or

And

Seq

Seq

Seq

And

And

Apply

 C1

Apply

 C2

Apply

 C3

Apply

 C4

Apply

 C5

Apply

 C6

Apply

 C7

Or

O(n log n)

O(n log n)

 /\ C++

G4

G3

G1

Grest G9

G6

G7

G5

And C++

G2

Rationale

D

e

r

i

v

a

t

i

o

n

H

i

s

t

o

r

y

f 0

f 1

f 2

f 3

f 4

f 5

f 6

f G

 Transformational

 Design

“[Baxter92 Design Maintenance Systems" CACM]

Paradigm: Design Capture with Rationale

 © Semantic Designs, Inc. 34 9/28/2017

Paradigm: Revising Design with s

• Transformational Design

– Functionality Spec (f0) + Derivation

– + Performance Spec (Grest)

+ Justification + Alternatives

• Metaprograms to construct design

– Goal driven transform application

• Incremental Updates as s

– Specification, Performance, Technology s

– s drive design revision:

 retain transforms that commute with delta

Or

And

Seq

Seq

Seq

And

And

Apply

 C1

Apply

 C2

Apply

 C3

Apply

 C4

Apply

 C5

Apply

 C6

Apply

 C7

Or

O(n log n)

O(n log n)

 /\ C++

G4

G3

G1

Grest G9

G6

G7

G5

And C++

G2

Rationale

D

e

r

i

v

a

t

i

o

n

H

i

s

t

o

r

y

f 0

f 1

f 2

f 3

f 4

f 5

f 6

f G

@p

 Transformational

 Design

@p

@p(Ci@q(fi)) =

Ci@q’(’@p’(fi))
Ci@q

’@p’

fi+1'

fi fi'

fi+1 Commuting Transforms

Ci@q’

“[Baxter92 Design Maintenance Systems" CACM]

 © Semantic Designs, Inc. 35 9/28/2017

Reality: What to do when all you have is code?

1. You are here with

10,000 lines of CM Fortran

fs

 © Semantic Designs, Inc. 36 9/28/2017

Practical: (Incremental) Design Recovery

(* Symbolic Model *)

Application = Wavepropagation;

ModelType = StressStrain;

Medium = Acoustic,

Boundaries = Absorbing

Dimensionality = 2;

(* Target Properties *)

TargetLanguage = Fortran77;

1am.inFile = “1am.grd”;

(* Algorithm *)

AlgorithmClass = FiniteDifference;

FDMethod = ExplicitMethod;

BoundaryMethod = Taper,

DefaultOrder = 2;

(* Program *)

InlineQ = False;

2. Recover design/spec

by “running” transforms backwards!

1. You are here with

10,000 lines of CM Fortran

 © Semantic Designs,

Inc.

 37 04/29/14

Syntax patterns:

Matching idioms to concepts to reverse engineer

A code idiom

 f1

 f0

...

bc=get_bank_co

de(bn)

...

...

if (bn>10 & bn < 25)

 bc=3;

else

 bc = 0;

...

 © Semantic Designs,

Inc.

 38 04/29/14

Syntax patterns:

Matching idioms to concepts to reverse engineer

default base domain C~ISO9899c1990.

public pattern

 get_bank_code(bank_number:IDENTIFIER,

 bank_code:IDENTIFIER):statement_seq

 = "if (\bank_number > 10 & \bank_number <= 25)

 \bank_code = 3; // bank of ethel

 else

 \bank_code = 0; // unknown bank number

 ".

A code idiom

Code pattern for idiom

...

bc=get_bank_co

de(bn)

...

...

if (bn>10 & bn < 25)

 bc=3;

else

 bc = 0;

...

 © Semantic Designs, Inc. 39 9/28/2017

 Converting a real semaphore implementation
back into abstraction

Baxter, I. and Mehlich, M.

Reverse Engineering is Reverse Forward Engineering.

Working Conference on Reverse Engineering, IEEE, 1997.

http://www.semanticdesigns.com/Company/Publications/WCRE97.pdf

RT:UnLock ; unlock block of code whose semaphore is in (X)

 intds ; lock out the world momentarily

 inc scb:count,x ; anybody in queue ?

 bgt RT:ITSX ; b/ no, done releasing resource

 stx itempx ; save pointer to semaphore

 ldx scb:tcbq,x ; pointer to TCB to activate

 ldd tcb:nexttcb,x ; find pointer to TCB following that

 stx itempd ; save pointer to TCB to activate

 ldx itempx ; pointer to semaphore

 std scb:tcbq,x ; remove task from SCB queue

 ldx itempd ; pointer to TCB to make ready to run

RT:ITSC ; insert task at (X) into ready queue and switch contexts if needed

; Assert: interrupts are disabled here

 jsr RT:ITIQ ; insert task into ready queue

 ldx RT:TCBQ ; are we still highest priority task ?

 cmpx RT:CTCB ; ... ?

 beq RT:ITSX ; b/ yes, pass control to caller

 ldx #RT:ISCH ; no, force task switch

 jmp RT:SInt ; by interrupt to task scheduler

RT:ITSX inten ; enable interrupts and return to caller

 rts

procedure RT_UnLock(x: ptr to semaphore)

begin

 // unlock specified semaphore

 V(x); // release a resource unit

 return ; // return to original caller

end;

30 transformation rules including de-optimizations

 © Semantic Designs, Inc. 40 9/28/2017

CVTUCB BMOD (0,5)

 USING UCBOB,R3

 CLC UCBNAME,=C'UCB'

 BNE UCB3

 LH R0,UCBCHAN

 LA R2,4(0,R2)

 LA R4,4

HEXLOOP SRDL R0,4

 SRL R1,28

 CH R1,=H'10'

 BL HEXLOW

 SH R1,=H'9'

 STC R1,0(0,R2)

 OI 0(R2),X'C0'

 B HEXHI

HEXLOW STC R1,0(0,R2)

 OI 0(R2),X'F0'

HEXHI BCTR R2,0

 BCT R4,HEXLOOP

 MVI 0(R2),C'/'

 B UCB4

UCB3 MVC 2(3,R2),UCBNAME UCBNAME

 MVC 0(2,R2),=C'/0'

UCB4 EMOD

void fnCvtucb(char *pc, struct Ucbob *pUcbob)

 { unsigned int i; unsigned int j; signed int k;

 if (memcmp(pUcbob->Ucbname, "UCB",

 sizeof pUcbob->Ucbname) == 0) {

 i = (int) pUcbob->Ucbchan;

 pc += 4;

 k = 4;

 // label: hexloop

 do {

 j = i & 0x0f;

 i = i >> 4;

 if (j >= 10) {

 *pc = j - 9;

 *pc |= 0xc0;

 } else {

 // label: hexlow

 *pc = j;

 *pc |= 0xf0;

 }

 // label: hexhi

 --pc;

 --k;

 } while (k != 0);

 *pc = '/';

 } else {

 // label: ucb3

 memcpy(pc + 2, pUcbob->Ucbname, 3); // ucbname

 pc[0] = '/', pc[1] = '0';

 }

 return;

 }

Draco in reverse
Mainframe HLASM to C code

Several hundred transformation rules

including de-optimizations, goto removal

 © Semantic Designs,

Inc.

 41 04/29/14

Data Flow patterns:

Matching code with dataflows, not syntax

default base domain C~ISO9899c1990.

public data flow pattern

 get_bank_code(bank_number:IDENTIFIER<~,

 bank_code:IDENTIFIER~>):statement_seq

 = "if (\bank_number > 10 & \bank_number <= 25)

 \bank_code = 3; // bank of ethel

 else

 \bank_code = 0; // unknown bank number

 ".

A code idiom

 Is the idiom somewhere in here? YES Data flow pattern for idiom

 © Semantic Designs, Inc. 42 9/28/2017

ASTs, Control Flow

 and Data Flow 0

x=x+1;

if x>3 then y=x;

Multiple Models of Code

 © Semantic Designs, Inc. 43 9/28/2017

ASTs, Control Flow

 and Data Flow 1

ID:x

=

+ ID:x

NAT

:1

x=x+1;

if x>3 then y=x;

ID:x

=

ID:y

if

ID:x

>

NAT

:3

;

;

 © Semantic Designs, Inc. 44 9/28/2017

ASTs, Control Flow

 and Data Flow 2

ID:x

=

+ ID:x

NAT

:1

x=x+1;

if x>3 then y=x;

ID:x

=

ID:y

if

ID:x

>

NAT

:3

;

;

read x get 1

+

write x

read x

>

get 3

read x

write y

start

done

x_1

 © Semantic Designs, Inc. 45 9/28/2017

ASTs, Control Flow

 and Data Flow 3

ID:x

=

+ ID:x

NAT

:1

x=x+1;

if x>3 then y=x;

ID:x

=

ID:y

if

ID:x

>

NAT

:3

;

;

read x get 1

+

write x

read x

>

get 3

read x

write y

start

phi

done

x_0

x_1

y_0

y_1

 © Semantic Designs, Inc. 46 9/28/2017

ASTs, Control Flow

 and Data Flow 3

ID:x

=

+ ID:x

NAT

:1

x=x+1;

if x>3 then y=x;

ID:x

=

ID:y

if

ID:x

>

NAT

:3

;

;

read x get 1

+

write x

read x

>

get 3

read x

write y

start

phi

done

x_0

x_1

y_0

y_1

Ties of CF/DF to AST

 © Semantic Designs, Inc. 47 9/28/2017

What’s inside a Computer Program?
 A Data Flow Graph

int fibonacci(n)

{ unsigned int fl= 0, fh = 1, i;

 if (n <=1)

 fh = n;

 else

 for (i= 2; i<=n; i++) {

 int tmp = fh;

 fh =fl + fh;

 fl = tmp;

 }

 print ("Fib(%d) = %d\n", n, fh);

 return n;

}

Big example wouldn’t fit on football field…

Insight:

Maybe we can abstract away this detail

accumulate(fib#s)

 © Semantic Designs, Inc. 48 9/28/2017

COBOL tax computation Patterns
COMPUTE-TOTAL.

 MULTIPLY QUANTITY BY PRICE GIVING TOTAL-AMOUNT.

 IF TOTAL-AMOUNT > DISCOUNT-THRESHOLD

 MULTIPLY TOTAL-AMOUNT BY DISCOUNT-PERCENT

 GIVING DISCOUNT-AMOUNT

 DIVIDE 100 INTO DISCOUNT-AMOUNT

 SUBTRACT DISCOUNT-AMOUNT FROM TOTAL-AMOUNT.

 ADD ONE TO VAT-RATE GIVING TAX-ADJUSTMENT.

 MULTIPLY TAX-ADJUSTMENT INTO TOTAL-AMOUNT.

 DISPLAY COMPANY-NAME.

 DISPLAY "Total: ", TOTAL-AMOUNT.

data flow pattern ComputeTax_by_adding(TaxRate:Constant,

 Total:IDENTIFIER)

 :StatementSequence

 Temp:IDENTIFIER

 “MULTIPLY \Total BY \TaxRate GIVING \Temp.

 ADD \Temp TO \Total”

 if Value(TaxRate)>0.0 and Value(TaxRate)<1.0

data flow pattern ComputeTax_by_multiplying(TaxRate:Constant,

 Total:IDENTIFIER)

 :StatementSequence

 “Compute \Total = 1.0 + \TaxRate”

 if Value(TaxRate)>0.0 and Value(TaxRate)<1.0;

data flow pattern ComputeTax(TaxRate:Constant,

 Total:IDENTIFIER):

 <HowTaxed: TaxStyle>:

 StatementSequence

 case HowTaxed

 when `Added`

 ComputeTax_by_adding(TaxRate,Total)

 when ‘Multiplied’

 ComputeTax_by_multiplying(TaxRate,Total)

 esac;

define TaxStyle = { `Added`, ‘Multiplied’ }

COMPUTE-INVOICE.

 MULTIPLY AMOUNT BY VAT-RATE GIVING TAX.

 Compute INSURANCE = INSURANCE_RATE * AMOUNT.

 ADD TAX TO AMOUNT.

 ADD INSURANCE TO AMOUNT GIVING INVOICE_TOTAL.

 © Semantic Designs, Inc. 49 9/28/2017

• Used to enumerate space of implementation choices

• Each decision represents selection of specific alternative for a choice

• Often there are complex relations across decisions

• Stack-as-array cannot realize “pop” using link-list operations

• Data flow pattern for alternative depends on stack-as-array feature

• Called generic types

• Patterns encode valid decision combinations

 with arbitrary boolean constraints

• Matcher generates decision sets producing coherent dataflows

Choice/Decision data declarations 1

generic type stack_implementation =

 enum { `stack_via_singly_linked_list`

 `stack_via_double_linked_list`

 `stack_via_array_with_index` };

 © Semantic Designs, Inc. 50 9/28/2017

Choice/Decision data declarations 2
• Syntax: generic type identifier = typedeclaration;
• identifier is an RSL standard identifier
• typedeclaration:

• boolean, with decision being True or False
• character (Unicode)
• string (of Unicode characters)
• natural

• natural unsigned_constant .. unsigned_constant
• integer

• integer signed_constant .. signed_constant
• float

• float float_constant .. float_constant
• rational
• rational rational_constant .. rational_constant
• enum { decision_literal_string, … }

 with decision_literal_strings being `text` (accent grave)
• identifier (referring to an already named generic type)
• * (RSL attempts to infer the type based its usage)

 © Semantic Designs, Inc. 51 9/28/2017

Matrix Multiply in real programs
• Abstract operation A*B

– Fundamental to thinking about application

– Rarely coded that way

• May be implemented in code in many ways

– Algorithmic variations

• Triply nested for loops

• Strassen (recursive decomposition)

• Library calls (BLAS == Basic Linear Algebra Subprograms)

– Different data representations

• Contiguous Memory Block: (row or column major order)

• Sparse Matrix

• Upper/Lower Triangular Matrix

• Matcher must find “matrix multiply” in face of variations

 © Semantic Designs, Inc. 52 9/28/2017

Matching abstract concepts

using dataflow instead of syntax
private data flow pattern AddInto

 (t: IDENTIFIER, -- target being updated

 s: IDENTIFIER -- value to add to target

):statement

 = "\t += \s;" ? "\t = \t + \s;".

public data flow pattern MatrixMultiply

 <i: Implementation,

 ra: Representation, oa: Order,

 rb: Representation, ob: Order,

 rc: Representation, oc: Order>

 (n: IDENTIFIER <~, -- in: matrix size parameter

 m: IDENTIFIER <~, -- in: matrix size parameter

 p: IDENTIFIER <~, -- in: matrix size parameter

 a: IDENTIFIER <~, -- in: source matrix

 b: IDENTIFIER <~, -- in: source matrix

 c: IDENTIFIER ~> -- out: target matrix

):statement

 = case

 when i == `Explicit Code` then

 [i: IDENTIFIER, j: IDENTIFIER, k: IDENTIFIFER,

 s: IDENTIFIER,

 ta: IDENTIFIER, tb: IDENTIFIER, tc: IDENTIFIER.

 "for (\i=0; \i<\n; \i++)

 for (\j=0; \j<\p; \j++) {

 \s=0;

 for (\k=0; \k<\m; \k++) {

\ReadElement\<ra,oa>\(\a\,\n\,\m\,\i\,\k\,\ta\)

\ReadElement\<rb,ob>\(\b\,\m\,\p\,\k\,\j\,\tb\)

\tc = \ta * \tb;

\AddInto\(\s\,tc\)

 }

\WriteElement\<rc,oc>\(\c\,\n\,\p\,\i\,\j\,\s\)

 }"

]

 when i == `BLAS` then

 …

 esac.

 © Semantic Designs, Inc. 53 9/28/2017

Matching abstract concepts

using dataflow instead of syntax
private data flow pattern AddInto

 (t: IDENTIFIER, -- target being updated

 s: IDENTIFIER -- value to add to target

):statement

 = "\t += \s;" ? "\t = \t + \s;".

public data flow pattern MatrixMultiply

 <i: Implementation,

 ra: Representation, oa: Order,

 rb: Representation, ob: Order,

 rc: Representation, oc: Order>

 (n: IDENTIFIER <~, -- in: matrix size parameter

 m: IDENTIFIER <~, -- in: matrix size parameter

 p: IDENTIFIER <~, -- in: matrix size parameter

 a: IDENTIFIER <~, -- in: source matrix

 b: IDENTIFIER <~, -- in: source matrix

 c: IDENTIFIER ~> -- out: target matrix

):statement

 = case

 when i == `Explicit Code` then

 [i: IDENTIFIER, j: IDENTIFIER, k: IDENTIFIFER,

 s: IDENTIFIER,

 ta: IDENTIFIER, tb: IDENTIFIER, tc: IDENTIFIER.

 "for (\i=0; \i<\n; \i++)

 for (\j=0; \j<\p; \j++) {

 \s=0;

 for (\k=0; \k<\m; \k++) {

\ReadElement\<ra,oa>\(\a\,\n\,\m\,\i\,\k\,\ta\)

\ReadElement\<rb,ob>\(\b\,\m\,\p\,\k\,\j\,\tb\)

\tc = \ta * \tb;

\AddInto\(\s\,tc\)

 }

\WriteElement\<rc,oc>\(\c\,\n\,\p\,\i\,\j\,\s\)

 }"

]

 when i == `BLAS` then

 …

 esac.

Dataflow Pattern for MatrixMultiply for C (1)

Matrix multiply abstraction found in code

 © Semantic Designs, Inc. 54 9/28/2017

Model/Abstraction Based Migration
(Dow Chemical)

AS-IS

Description of RLL

Description of Model

Translation

(Abstraction)

Rules from RLL to

DCS concepts

DMS

Grammar

Rules

Parse Analyze

Rule

Compiler
Transform Format

Target Language

Formatting Rules

Program

Understanding

Rules

Rewrite Rules

DMS

Grammar

Rules

Parse Analyze

Rule

Compiler
Transform Format

Target Language

Formatting Rules

Program

Understanding

Rules

Rewrite Rules

DCS Model:

Process Control

Concepts applied

to specific factory
Modern

 Controller

Code

(ST)

TO BE

if(ST4)

then Timer(T42,4sec);

if(ST2)

then Timer(t41,4sec);

ST1X :=

 (ST1 ! ST4 & T42.dn)

 & (~ST1 ! ~ S1 ~ S2)

 ! first_scan);

ST2X :=

 (ST2 ! ST1 & S1 & ~S2)

 & (~ST2 ! T41.DN);

ST3X :=

 (ST3 ! ST2 & T41.DN)

 & (~ST3 ! S1 ! ~S2)

ST4X :=

 (ST4 ! ST3 & ~S1 & S2)

 & (~ST4 | T42.DN);

DMS

Grammar

Rules

Parse Analyze

Rule

Compiler
Transform Format

Target Language

Formatting Rules

Program

Understanding

Rules

Rewrite Rules

DMS

Grammar

Rules

Parse Analyze

Rule

Compiler
Transform Format

Target Language

Formatting Rules

Program

Understanding

Rules

Rewrite Rules

Description of Model

Description of ST

Translation Rules

from Model to ST

Guidance Filter

Safe?

PID

Control

Temp

Heat

Alarm
DO(252) IF STEP(255) AND #STEP(288)

DO(152) IF #DI(123) AND AI(1) GT AP(2) AND #DI(153) C

AND DC(144)

DO(152) IF #DI(123) AND AI(1) GT AP(2) AND C

[DO(153) AND #DI(153)] AND DC(144)

DO(152) IF #DI(123) AND DOT(153) AND #DI(153) AND C

AI(1) GT AP(2) AND DC(144)

DC(31) IF DO(101) AND #DI(101) AND #ALM(121) AND C

AI(121) GT AP(1) AND AI(121) LT AP(2) OR C

[DR(1) OR DR(2)]

DO(121) IF STEP(152) AND DC(31) AND #DC(32)

DO(166) IF STEP(155) AND DC(137) AND DC(138) AND C

#DC(139) AND #DC(140) AND #ALM(110)

DO(165) IF DO(166) AND #DI(166)

DO(195) IF AI(125) GT AP(3,80,100) C

OR [DO(195) AND AI(125) GT AP(4,25,100)]

…

 © Semantic Designs, Inc. 55 9/28/2017

Dowtran
DO(252) IF STEP(255) AND #STEP(288)

DO(152) IF #DI(123) AND AI(1) GT AP(2) AND #DI(153) C

AND DC(144)

DO(152) IF #DI(123) AND AI(1) GT AP(2) AND C

[DO(153) AND #DI(153)] AND DC(144)

DO(152) IF #DI(123) AND DOT(153) AND #DI(153) AND C

AI(1) GT AP(2) AND DC(144)

DC(31) IF DO(101) AND #DI(101) AND #ALM(121) AND C

AI(121) GT AP(1) AND AI(121) LT AP(2) OR C

[DR(1) OR DR(2)]

DO(121) IF STEP(152) AND DC(31) AND #DC(32)

DO(166) IF STEP(155) AND DC(137) AND DC(138) AND C

#DC(139) AND #DC(140) AND #ALM(110)

DO(165) IF DO(166) AND #DI(166)

DO(195) IF AI(125) GT AP(3,80,100) C

OR [DO(195) AND AI(125) GT AP(4,25,100)]

DC(120) IF STEP(125) AND DM(120) C

OR [DC(120) AND #STEP(120)]

DO(150) IF ‘LOGIC’ AND DC(120)

DC(2) IF ALM(101) OR ALM(121) OR STEP(4) OR STEP(8)

DO(104) IF #DC(2)

DC(121) IF #DC(121) FOR DT(1,30,10)

DO(125) IF DC(121) AND ALM(125)

interpreted as Dataflow

then matched by Dataflow Patterns

PID

Special

Calc Code

Enable

Code

PID Signal

Conditioning

Special

Calc Code

 © Semantic Designs, Inc. 56 9/28/2017

Various Dowtran Analyzers

Parse Symbol

Table

Control

Flow

Data

Flow

State Transition

Analysis

Latch

Detection

Value

Range Analysis

Timer

Analysis

Data Flow Pattern

Match

Array/Index

Range Detection

Controller

Assembly

Best Match

Selection/Revision

Backward

Slice

Forward

Slice

Indirection

Analysis

UI

Analysis

Project

Estimation

Data

Safety Code

Detection

 © Semantic Designs, Inc. 57 9/28/2017

Connecting Matched Dataflow Patterns
using intervening dataflows

 © Semantic Designs, Inc. 58 9/28/2017

Lessons

• Program Transformation is better model than MDE

– Perspective and theory enable us to understand and improve

• We throw away the design. Price is really high.

– STOP THAT

• Clean design capture starts with new program

– We have a theory about how to capture it

– Can revise transformational designs

• Gives continuous maintenance model preserving design!

• Apply reverse engineering to legacy software

– Reconstruct the part of the design you need

– Switch to continuous maintenance model

• Dataflow patterns provide one kind of RE

– Proven in practice on real code (Dow Chemical)

Speaker Biography

Dr. Baxter has been building system software since 1969, when he built a timesharing system on Data

General Nova serial #3. In the mid-seventies, he built real-time, single user, multi-user systems and

locally distributed OSes on 8 bit CPUs.

Realizing that software engineering was largely enhancement of existing code rather than building new

code, and that the OS architectures were conceptually similar but shared no code, he went back to

graduate school to learn more about reuse of knowledge in software maintenance. He studied program

transformation tools for code generation and modification, obtaining a PhD from UC Irvine in 1990.

At the Schlumberger Computer Science lab, he worked on generation of parallel CM-5 Fortran code for

sonic wave models from PDEs. He spent several years as consulting scientist for Rockwell Automation

working on automating factory control.

In 1996, he founded Semantic Designs, where he is now CEO and CTO. At SD, he architected DMS, a

general purpose program transformation engine, used in commercial software reengineering tasks, and

he designed and implemented PARLANSE, a task-parallel, work-stealing programming language in

which DMS is implemented.

He has been project lead on applying DMS to re-architect large C++ applications. Recent work includes

automated recovery of chemical factory process control models from low-level industrial controller

software to enable migrations to new process control platforms.

Abstract: Supporting Forward and Reverse
Engineering with Multiple Types of Models

Many model-based tools work with single models, which capture some abstraction of a target software

system of interest, with intent to convert the abstract description into a runnable computer program

somehow. These tools usually provide some type of model-to-model transforms to carry out operations

appropriate for the abstraction level of "the" model, and model-to-text transforms to generate low-level

program source code. The model-to-model and model-to-text transforms are treated differently; one

difference is that model-to-model transforms (may) compose, but model-to-text transforms by definition

do not compose.

We have found it practical to mix high level models of programs with low-level models of source code,

using domain-specific notations for each, and applying composable transformations (both reifying and

abstracting) to both.

This talk will provide an intuitive unified view of how "models" and "code" can be treated consistently, and

how transforms between them may be harnessed for both forward and reverse engineering.

A practical version of such a tool must be able to (meta)model a variety of models and source code, and

allow specification and execution of transformations across these.

We will describe an effective tool for reverse engineering "assembly code" for running large-scale

chemical plants back to abstract process control models, and then forward engineer those models to a

completely different industrial control language, preserving the critical elements of factory control. This

realizes the vision of (ADM/MDA) of "architecture-driven modeling of legacy applications into reifiable

models. The implementation uses a combination of abstract syntax trees, data-flow graphs, and what

amounts to graph-grammars, and mixes the analysis and transformation of these. Special support for

reverse engineering low level code is provided by data flow pattern graphs. This reverse/forward

engineering tool is realized using a commercial program transformation (DMS).

The resulting tool is being used by a Fortune 100 company to re-engineer the process control code for

roughly 1000 factories.

