
Eliciting Abstractions from a
Software Product Line

Charles W. Krueger
BigLever Software, Inc., 10500 Laurel Hill Cove

Austin TX 78730 USA
ckrueger@biglever.com

Dale Churchett

Salion, Inc., 720 Brazos St., Ste. 700
Austin TX 78701 USA

dale.churchett@salion.com

Abstract. The effectiveness of a software product line depends on the
effectiveness of the abstractions used to manage it. Salion uses a combination
of technology and vigilance to elicit emerging abstractions in its software
product line. The result is greater commonality, more concise variations, and
faster time-to-market for new product family members.

1. Introduction

The effectiveness of a software reuse technique depends on the effectiveness of the
abstractions employed.[1] Since software product line approaches gain their benefit
from large-scale software reuse, the effectiveness of a software product line will
likewise depend on creating and maintaining effective software product line
abstractions.

Salion uses technology and vigilance to aggressively search out and refactor

abstractions in its software product line. As a result, Salion optimizes its software
product line through greater commonality and more concise variations. This provides
faster time-to-market for new products, lower development costs, and higher software
quality.

One example of eliciting software product line abstractions is described in this

paper. This case identifies an emerging abstraction in a variation point that reduces
the lines of variant code per family member from an average of 1600 to 250.

2. Technical Approach for Eliciting Abstractions

During the normal evolution of a software product line, variations are often
introduced to provide greater flexibility in the product line or to expand the scope of
the product line into new areas. This generally leads to both the introduction of new
variation points and the growth of variation inside of existing variation points.

This tendency towards increased variation reduces the ratio of common software to
variant software and thus reduces the effectiveness of software reuse in the product
line. That is, there is a natural entropy, or tendency for divergence, that occurs during
product line evolution.

To counteract this entropy, vigilance is required to constantly search for existing or

emerging abstractions in the variation points. Once identified, these abstractions
enable the variations to be refactored into greater levels of common software and
more concise variant software, thereby increasing the levels of reuse in the product
line.

Experience at Salion has shown that appropriate software product line technology

can help to elicit abstractions. The first technology example is software product line
infrastructure that clearly encapsulates variation points in the source base of the
software product line. For example, Salion uses the GEARS software mass
customization infrastructure from BigLever Software.[2,3,4] GEARS provides
explicit constructs that encapsulate and localize source file variations in a software
product line. The lead architect at Salion routinely scans through the variation points
in search of existing or emerging abstractions. Without the explicit and localized
encapsulation of the variation points, it would be considerably more difficult to know
where to look and what to compare in the search for abstractions.

The second type of technology that aids in the elicitation of abstractions is software

comparison. A simple example is the conventional UNIX diff. It can be used to
search for cut-copy-paste clones within a variation point. More advanced structural
abstractions can be found using a tool such as the CloneDoctor from Semantic
Designs.[5] Salion uses this tool to search for structurally similar abstractions both
within and among different variation points and common software. CloneDoctor is
able to find abstractions from similar but not identical software fragments that often
result from cut-copy-paste-modify during development.

Experience at Salion indicates that at least one engineer must be committed to the

task of eliciting abstractions from variation points. Many engineers developing
software in variation points will not have the time, skill, experience, or interest to
search out abstractions. Without vigilance by skilled architects or generalists, entropy
will take hold within the variation points and the effectiveness of the software product
line will degrade.

3. Case Study

Development on Salion’s product suite began with little customer input. The system
was designed based on knowledge gathered by initial market research, customer
demos and industry experts. Consequently the software design had to be robust in the
face of certain change. Salion’s development team adopted a component-based
development practice, an agile development process, and a reactive software product
line approach from the start.[6,7]

As the first few customers were deployed from the product line, the variation
points of the system began to stabilize. Analysis showed that previously unseen
abstractions were emerging within the variation points.

In one example, a developer had created a variation point that encapsulated

variants of a façade object used by user interface developers. The façade handled
complex logic revolving around versioning, database operations, and view helper
objects. The first façade variant implementation required 1600 lines of code. After
realizing that much of the code would be identical for each variant implementation, he
began to search for an abstraction. By applying diff to two variants, the common code
was moved into an abstract superclass outside of the variation point and the façade
variants were implemented as subclasses in the variation point (see Figure 1). The
Template Method design pattern was applied to the superclass so that subclasses were
required to implement only one method, but if required they could override three
more.[8]

Because unit tests were already written for the two façades, refactoring the

abstraction out of the variation point took only two days (including testing). The
developer and a co-worker (who had been assigned to the next façade variant
implementation) conducted a pair-programming session. The benefit of pair
programming on the façade variation point refactoring task proved to be invaluable.
First, the co-worker learned the design strategy of the superclass and the
responsibilities of the subclass. Second, bugs were spotted earlier and more unit tests
were written as needed.

Once the abstract façade was implemented, the first façade variant was reduced

from 1600 to 600 lines of code (LOC). The second façade was implemented in 30
LOC (constructors were all that were needed); the third façade was implemented in 80
LOC and the fourth in 400 LOC. By abstracting code from a set of variants in a
variation point, a usable and practical framework emerged.

Inevitably, as soon as the product line was put into production, a bug was found.

The source of the bug was traced to the abstract class, so a single fix was
automatically picked up by all product flavors. If the same bug had been found in the
original implementation, the fix would have been required in each variant (assuming
the developer remembered to do them all).

In general practice, the Salion software architect is able to continually monitor the
software product line for emerging abstractions in the variation points, first by visual
inspection and second by applying code diffs and clone detection technology.
Because GEARS isolates variations in subdirectories, variations for a common
abstraction can be easily and efficiently elicited.

AbstractRFQFacade

createRFQ()
createNewVers ion()
getRFQViewHelper()
assembleRFQViewHelper()

RFQFacade

Y.java

assembleRFQViewHelper()

<<variation>>
Z.java

assembleRFQViewHelper()

<<variat ion>>X.java
<<variation>>

<<actuates to>>

<<actuates to>>

<<actuates to>>

Provides common methods to handle complex
versioning business logic, view helper
assembly and CRUD operations.

Some template methods are provided for
subclasses to be called within the
transaction-safe also provided by the
superclass.

Only one template method is provided for the
example: assembleRFQViewHelper()~ 700 LOC

~ 30 LOC

~ 400 LOC

~ 500 LOC

Variations are created on the one and only
subclass. Clients may always rely on an
RFQFacade being present in the system.

Variations between product flavors for managing
RFQs are minimized in variation points managed
through GEARS. Complex facades are at most 500
LOC, as opposed to 1500/1700 prior to refactoring
out a superclass.

Figure 1

4. Conclusions

Experience at Salion has shown that the engineering team must tightly control the
natural entropy present during software evolution in order to maintain the
effectiveness of their software product line. One way to control this entropy is to
constantly search out and elicit emerging abstractions in the variation points of the
product line. The following technology and techniques in combination can
accomplish this:

• Encapsulated variation points, such as provided by GEARS, to clearly identify

where to search for emerging abstractions
• Diff and clone detection for mechanically identifying potential abstractions
• Constant vigilance and a development process that promotes constant

improvement through refactoring
• Traditional object-oriented design skills and patterns

References

1. Krueger, C. Software Reuse. 1992. ACM Computing Surveys. 24, 2 (June), 131-
183.

2. Salion, Inc. Austin, TX. www.salion.com
3. BigLever Software, Inc. Austin, TX. www.biglever.com
4. Clements, P. and Northrop, L., Salion, Inc.: A Case Study in Successful Product

Line Practice, Software Engineering Institute, Carnegie Mellon University,
Technical Report in progress.

5. Semantic Designs, Austin, TX. www.semanticdesigns.com
6. Buhrdorf, R. and Churchett, D., The Salion Development Approach: Post

Iteration Inspections for Refactoring (PIIR), Rational Edge,
www.therationaledge.com/content/mar_02/m_salionDevelopment_rb.jsp, March
2002.

7. Krueger, C. Easing the Transition to Software Mass Customization. Proceedings
of the 4th International Workshop on Product Family Engineering. October 2001.
Bilbao, Spain. Springer-Verlag, New York, NY.

8. Gamma, et.al., Design Patterns, Addison-Wesley, 1995.

