
Automated Tool Support for a Large Scale Diagramming Tool
Aaron J. Quigley

 Dept. of Computer Science & Software Engineering,
University of Newcastle, Callaghan NSW,

aquigley@cs.newcastle.edu.au

Abstract

GRACE is a large-scale diagramming tool constructed with the aid of automated tools from the Design
Maintenance System (DMS). Diagramming tools as a component of meta-case tools are common in
the development of new software engineering projects. The design and development of GRACE
addresses the development of a large-scale diagramming tool for the software maintenance area. The
nature of legacy systems, due to their domain specific nature and scale, imposes certain constraints on
the production of new tools. GRACE and its supporting tools are described in this context.

Keywords: Visualization, Maintenance, Visual Language, and Layout

1. Introduction
Numerous software engineering

diagramming schemes are available which
allow software developers to model the design
of a system and/or data stores. In recent years
some of these schemes have been incorporated
into CASE tools or more specifically META-
CASE tools which aid software development in
new software engineering projects.

However, there has been a general lack of
attention paid to the development of advanced
CASE tools for software maintenance. Tools
which do address the maintenance problem,
often force the user to learn different visual
notations which may not be as powerful,
flexible, expressive or concise as the
diagramming scheme of choice in the pre-
existing software environment. The salient
difference between the primary development
process and the maintenance of legacy systems
is that legacy systems already exist and must
be considered when developing any new tools
[6,8,14]. The very existence of the legacy
system imposes certain constraints on the
production of new CASE tools.

Another aspect of the problem, for large
code base systems, is the inability of most
visual layout tools to adequately deal with the
scale of the maintenance problem. This paper
will discuss the design and development of
tools which can support arbitrary diagramming
schemes. The specification of the visual
lexemes of the diagramming schema and the
creation, layout and editing of large-scale
software engineering diagrams will be
addressed here.

An important aspect of producing any visual
layout tool is to avoid poor information
presentation. CASE tools are already hindered
by bureaucratic debris in a cramped computer
display. When graphical presenting
information, “if a picture isn’t worth a
thousand words, the hell with it” [2]

2. Design Maintenance System
DMS is a software engineering toolkit for

transforming and modifying domain-specific
software specifications. DMS is entirely
implemented in a parallel programming
language PARLANCE developed by Semantic
Designs Inc. It provides a parsing
infrastructure, an AST builder, a transformation
engine, pretty-printers and other basic tools for
automatic source code modification based on
program semantics. DMS deals with domain
definitions, part of which comprise explicit
syntax and transformations. For domains that
have an associated graphical language, DMS
uses visual domain editors, which aid domain
engineers in specifying a description of the
domain.

Underlying DMS technology is a domain
independent data store called the
“Hypergraph”. The design of the Hypergraph
aims at addressing two major problems for
code modification: the scale of code base,
which can range from thousands to millions of
lines of code, and the computational
complexity involved in any large modification.

Another key facet of DMS technology is
the use of code generation in the production of
other software engineering tools, either for use
by DMS developers or external developers.
Specifically, this paper presents work which
was designed around and built using such code
generating tools [1].

3. Graphical Lexeme Editor (GLE)
Visual diagramming languages such as

UML, Entity Relationship diagrams, State
Charts and Data Flow Diagrams are used to
specify the design and aid in the development
of software engineering projects. These
languages are specific to software
development; however, there are numerous
other domain specific visual languages
(DSVL) for the specification of designs such
as circuit diagrams, SADT and PERT. These
domain specific languages allow for more
concise and easier to maintain visual
descriptions, along with being easier to reason
about due to the more specific nature of the
language [10,12].

These DSVLs all contain visual lexicons.
This visual lexicon is a dictionary, or the
vocabulary, of that language and the minimal
lexical unit of each language is a lexeme;
examples are shown in Figure 1.

Figure 1: A Variety of Visual Lexemes

Specifying the visual make-up and visual
constraints for each lexeme in a given
language is the purpose of the Graphical
Lexeme Editor (GLE). This tool, constructed as
a part of DMS allows domain engineers to
interactively specify, using some basic
drawing primitives, the visual representation,
visual usage constraints and connectivity of a
lexeme. Once a lexeme is fully specified then
it is added to the lexicon for this graphical
language which in turn is a component of the
domain description.

GLE is visually similar to many drawing
packages but it provides more than just
graphical editing. Each graphical primitive has
a set of associated properties, which the user
can change after the primitive has been placed.
These include position, colors, filling, line
thickness and a partial ordering of the
graphical primitives, if one exists.

These operations mean that a variety of
visual shapes can be created, which allows
most of the lexemes of a visual language to be
specified. An example of some UML lexemes
being specified in GLE is shown in figure 2.

Figure 2: UML Lexemes edited in GLE

These lexemes have more than just a
visual layout associated with them. Once the
lexeme is visually specified, then certain
usage, or layout constraints, can be applied.
These constraints control, for example whether
a lexeme can be scaled when drawn. Similarly,
some lexemes can be rotated, usually in any
rotation or just fixed set of rotations. An
example circuit diagram shown in figure 3,
was created using lexemes designed by GLE,
This consists of the visual representations of
AND, OR, EXOR and NOR gates. Conventional
circuit layouts only use these lexemes in a 0o,
90o, 180o, or 270o position; if the designer of
the visual lexicon wants to model this in the
lexeme specification, then the rotation
constraint must be applied. The lines which
connect lexemes together are also lexemes, and
as such must be specified and added to the
visual lexicon for the language being specified.
These lines also have usage constraints

Finally, for lexeme specification, some
connectivity rules must be applied. Ports are
logical items that can be associated with a
section of a graphical primitive [13]. In certain
visual languages there are some basic rules for
what is allowed when connecting, e.g. in
circuit logic the output gates cannot be directly
wired together.

4. GRAph Creator Editor (GRACE)
The graph creator is part of the DMS

toolkit. This editor provides facilities for the
creation and editing of visual descriptions
based on a specific visual lexicon. Using these,
domain and application engineers can specify

information, in a domain specific graphical
language. GRACE also comes with an API,
which allows this visual information to be
accessed by associated tools. These tools may
mearly be interested in the logical information
(i.e. syntax checker or logical search engines)
but other tools may be concerned with the
presentation of that information (i.e. layout
engines or animation engines)

The primary principal is to maximize the
information conveyed in the presentation [2].
Having layout engines access the presentation
of the information either as a pre-processing
step or interactively, helps avoid the visual
soup some CASE tools sometimes suffer from.

Figure 3: A circuit diagram and a
representation of the underlying graph.

Using GRACE to layout a lexeme based
visualization produces an underlying graph
containing all the information which describes
the visualization. This graph is in the
hypergraph repository which allows other tools
in DMS to interact with the graph and to alter it
in a consistent manner. As a result of using
this format, domain specific tools, for example
a visual syntax checker based on the domain
description, can be accessed from GRACE. This
allows a consistent and powerful visualization
tool to be built for any domain.

An example of a layout produced using
lexemes specified in GLE is shown in figure 3.
The gates and arcs are lexemes from GLE and
are shown as circles in the abstract
representation and the ports of those lexemes
are shown as squares. However, the abstract
graph contains no information about layout of
the visualization, this information comes from
the domain description. With the aid of layout
algorithms, GRACE can produce information
layouts specific to the domain in question.

GRACE is for domain engineers who may
use different DSVLs. Although the visual

lexicons may differ, and certain VLs do not
facilitate associated tools interacting with
them, there is a common set of operations that
GRACE needs to provide to all domian
engineers.

Due to the nature of software
maintenance, GRACE provides generic visual
navigation techniques for large amounts of
information, along with standard editing
facilities such as cut, copy, and paste. Visual
palettes for both the lexemes and the basic
syntax components are also provided to allow
organizations to customize sets of visual
macros that are used throughout the
organization’s code base.

Visual languages have an associated syntax,
which describes how the lexemes can be
composed to form ‘visual sentences’. If the
domain engineer has generated a syntax
checker for this VL, then it can be accessed
from GRACE. This allows the entire
visualization, or a sub section, to be
interactively checked for syntactic correctness.
The syntax of a VL contains connectivity
rules, which are visually specified in GLE.
GRACE can interactively check, report, and
disallow, connections between lexemes, which
invalidate rules of a specified VL.

4. Implementation

GLE provided a platform for much of the
initial research into GRACE. Issues on the data
repository and storage mechanisms along with
future tool interoperability were faced in
implementing GLE. Due to the nature of the
scale of the visualization problem involved
both GLE and the initial work on GRACEe were
implemented in PARLANCE a SD parallel
language.

Figure 4: Architecture of GRACE.

GRACE is designed to handle the
visualization of a large amount of data. It uses
a parallel programming language along with
space decomposition algorithms, as shown in
figure 4, for the selection, editing and layout
tasks. Using an SMP parallel processing
architecture allows for GRACE to handle large
visualization in a reasonable time.

Figure 4: Large Space Decomposition.

There are numerous automatic layout
algorithms available for information
presentation such as Sugiyama layouts,
orthogonal layout and force directed layouts
[3,4,9]. The computational complexity of
these algorithms usually prohibits their use in
dealing with very large information layouts. In
an attempt to address this problem, an
implementation of the force directed layout
was specified PARLANCE, which attacked the
problem by fully utilizing the parallel-
processing platform available. Subsequent
work has focussed on using space
decomposition techniques [11] to reduce the
complexity of the layout problem along with
using the parallel processing to speed up the
layout.

5. Future Work
Further work in this area will be focussing

on the problems associated with large-scale
information presentation. Specifically, the
nature of large scale graph layout [4, 11]
clustering, and visualization of multiple levels
of abstraction [15].

6. Acknowledgements
The main body of this work was

undertaken when the author was a research
intern at Semantic Designs Inc. in Austin
Texas during 1998. The ongoing nature of this
work relates to the authors Ph.D. study at the
University of Newcastle, in Australia

References
[1] Automatically Generating Visual Syntax-

Directed Editors, Computing Practices ACM
Communications of the ACM Volume 33 No 3

[2] Edward R. Tufte, Visual Explanations, Graphics
Press 1997.

[3] T. Fruchterman and E. Reingold, “Graph
Drawing by Force-Directed Placement”,
Software Practice and Experience vol, no. 11,
pp1129-1164, 1991

[4] Giuseppe Di Battista, Peter Eades et al, “Graph
Drawing, algorithms for visualization of
graphs”, Prentice Hall 1999.

[5] Sougata Mukherjea and James D. Foley,
“Requirements and Architecture of an
Information Visualization Tool”, Database
Issues in Data Visualization, IEEE Visualization
’95 Workshop pp 57- 75

[6] Bruce W. Weide and Wayne D. Heym, “Reverse
Engineering of Legacy Code is Intractable”,
Technical Report, Indiana University Southeast,
1994

[7] Charles Rich and Richard C. Waters, “The
Programmers Apprentice Project: A research
Overview”, IEEE Expert Special Issue 1997

[8] M. Hutchins and K. Gallagher, “Improving
Visual Impact Analysis”, International
Conference on Software Maintenance, 16
November 1998

[9] Karl-Friedrich Bohringer and Frances Newberry
Paulisch, “Using Constraints to Achieve
Stability in Automatic Graph Layout
Algorithms”, ACM SIGCHI Human Factor in
Computing Systems, Seattle April 1990.

[10] J. Rekers and A. Schurr, “Defining and
Parsing Visual Languages with Layered Graph
Grammars”, Technical Report Leiden
University 1996.

[11] Guy Blellcoh and Girija Narlikar,”A Practical
Comparison of N-Body Algorithms”, Technical
Report, Wright Laboratory 1991

[12] Wayne Citrin, Jeffrey D. McWhirter,
“Diagram Entry Mechanisms in Graphical
Environments”, ACM SIGCHI 1995.

[13] Isabel F. Cruz, “Expressing Constraints for
Data Display Specification: A Visual
Approach”, First Workshop on Principles and
Practice of Constraint Programming, April 1993

[14] M. Storey, K.Wong and H.A. Muller, “How
do Program Understanding Tools affect How
Programmers Understand Programs”, WCRE
97

[15] Survey Paper: Visualization Research Group,
University of Durham 1996

	2. Design Maintenance System
	3. Graphical Lexeme Editor (gle)
	Figure 1: A Variety of Visual Lexemes
	
	
	Figure 2: UML Lexemes edited in gle

	4. graph creator editor (GRACE)
	References

