
Automated Extraction

of Business Rules

and Models from Code

Ira Baxter, Ph.D., CEO/CTO

idbaxter@semanticdesigns.com

Friday, November 4, 2016 (11:30 am – 12:30 pm)

 Room: Florentine III & IV

Example: Chemical Plants

Change: Migrate Process Control programs

• Problem: Trusted plant controller

software running in end-of-life

industrial control computers

• Hundreds of different plants

• Migrate to modern controllers

• Recover abstract process

control from “assembly code”

• Solution: (in progress)

• Define abstractions in terms of dataflows with conditional implementations

• DMS matches legacy code via dataflows (“Programmer’s Apprentice”)

• Find consistent matching sets of abstractions

• Reify abstractions to new controller code

Jovial, COBOL, Natural, PL1, Assembler, Visual Basic….all from DMS

Some plants now converted

3 Key Points from Today’s Presentation

1. Define abstraction and how that is related to business rules

2. Show how computer code implements abstractions

3. Show how information flow and pattern matching

can support finding abstractions in code

enabling the extraction of business rules

Who am I?

Ira D. Baxter, Ph.D.

• Research on

• Software Reusability

• Theory for formal program design capture and modification

• Founder/CEO/CTO of Semantic Designs (automated tools company)

• 46 years building software tools

• Operating Systems and Compilers for minis and micros

• Program Analysis and Transformation Engines (DMS®)

• Usable Parallel Programming languages (PARLANSE)

• Architect/Project lead on Automated Solutions to tough problems

• Synthesis of parallel supercomputing codes for seismic simulation

• Code generation of programs to run automobile factories

• Translation of legacy mission software for B-2 Stealth Bomber

• Automated architectural re-engineering of Boeing aircraft mission software

• Impact analysis tools for large-scale mainframes: ANZ and US Social Security

• Model (“business rule”) extraction for Dow Chemical factories

The first model of the world
 might not be the right model

What can I do

if I believe this world model?

Aristotle

“… most substances are

compounds of these …”

Doh!

“A change in perspective is worth 80 IQ points”
(Alan Kay, Xerox Parc)

What can I do

if I believe this world model?

Why do we care about “Business Rules” at all?

• Our organizations are large, complex entities

• We run them with complex processes largely composed of software

• The software itself is made from accidental technologies du juor / d’hier(!)

• It is giant, complex, chaotic, and hard to understand

• … and we forgot what it all does

• How does management …

• know what the organization is doing?

• state what they want the organization to do?

• How can we change the software to do what management wants?

• Answer: abstract what the “complex process” is doing

• Hope the abstraction gets rid of accidental details

• Hope the abstraction uses vocabulary management understands

Abstraction? What on earth does that mean?

The essence of abstractions is preserving information that is relevant
in a given context, and forgetting information that is irrelevant in that
context.
 – John V. Guttag (MIT Computer Science)

This means

• teasing out what is important for a specific audience purpose

• from one system of vocabulary

• and translating it into another system of vocabulary

• easier to understand for that specific audience

It also means:
 leaving out the details that don’t matter.

Insight: Most of the way our software is implemented involves details
that ultimately don’t matter;
 all we want is the effect!

… isn’t it a bit weird that managers seem know this,
 and programmers don’t?

…

 code

….

…

 “rules”

….

abstract

So… what is a “Business Rule”?

• Requirements document (written in natural language [English])

• Z notation

• Semantics of Business Vocabulary and Business Rules (SBVR)

• Business Process Modeling Language

• Business Process Execution Language

• Decision Tables

• Decision Model

• Unified Modeling Language

• Flowcharts

• Domain Specific Languages

• Drools rules

• Random vendor result…?

How can we agree on what a BR is

if there are so many kinds?

So… what is a Business Rule?

• Requirements document (written in natural language [English])

• Z notation

• Semantics of Business Vocabulary and Business Rules (SBVR)

• Business Process Modeling Language

• Business Process Execution Language

• Decision Tables

• Decision Model

• Unified Modeling Language

• Flowcharts

• Domain Specific Languages

• Drools rules

• Random vendor result…?

How can we agree on what a BR is

if there are so many kinds?

Answer: They each focus on extracting certain information,

abstracting away other information. Each is unique!

Problem for users: what specific information do you want?

Often chosen (poorly) for you by what a vendor happens to offer.

Key Background Concepts

(Business) State:

 A set of facts true at a point in time about a (business) entity

State Model: The set of data describing a (business) entity
• Have purchase_orders

• Have warehouse_items

• Have unpaid_invoices

• Have available_cash

Data Model: The structure and meaning of the data: Vocabulary
• Structure == name and shape of the data

 (PO is tuple <customer,itemID>)

• Meaning is the set of operations on the data and their results

Order(POs) POs

 such that quantity (#) of POs increase

Fulfill(POs,WIs,UIs) <POs,WIs,UIs>

 such that #POs decreases, #WIs decreases, #UIs increase

Payment(UIs,AC) <UIs,AC>

 such that #UIs decreases, and amount AC increases

An algebraic (precise) specification (Spectrum)
of business data

algebra ItemID is

sorts: itemID ;

signatures: // discrete element algebra

axioms:

end

algebra Customer is String with

sorts: customer ;

signatures:

 newCustomer(string) customer ;

 name(customer) string ;

axioms:

 name(newCustomer(string))==string ;

end

algebra PurchaseOrder is Customer+ItemID+Integer with

sorts: purchaseOrder ;

signatures:

 newOrder(Customer,ItemID,Natural) purchaseOrder ;

axioms:

 orderingCustomer(newOrder(customer,itemID,integer)) == customer ;

 orderedItemID(newOrder(customer,itemID,integer)) == itemID ;

 orderedQuantity(newOrder(customer,itemID,integer)) == integer ;

end

algebra WarehouseItem is ItemID+Integer with

sorts: warehouseItem ;

signatures:

 quantityOnHand(itemID,natural) warehouseItem ;

axioms:

 warehouseItemID(quantityOnHand(itemID,integer)) == itemID ;

 quantityavailable(quantityOnHand(itemID,integer)) == integer ;

end

Shape ==

Schema

Meaning ==

Constraints

On Operations

An algebraic specification (Spectrum)
of business state

algebra BusinessState is Set<PurchaseOrder>, Set<WareHouseItems>,

 Set<UnpaidInvoice>, AvailableCash As Natural with

types: businessState

signatures:

 newCustomer(string) suffix(string)==“Inc.” ;

 newOrder(customer,itemID,desired) desired>0

 currentState(Set<PurchaseOrder>, Set<WareHouseItems>,

 Set<UnpaidInvoice>, AvailableCash) businessState);

 purchaseOrders(businessState) Set<PurchaseOrder> ;

...

 businessStartUp() businessState ;

...

axioms:

 purchaseOrders(currentState(POs,WIs,UIs,AC) = POs ;

 businessStartUp() == currentState(empty,empty,empty,1000);

 currentState(newOrder(customer,itemID,quantity+Set<PurchaseOrder>,

 Set<WareHouseItems>,

 invoice(customer,anyprice)+Set<UnpaidInvoice>, cashonhand) false ;

 -- no new orders allowed until previous invoices are paid

Meaning ==

Constraints

On Operations

Shape ==

Schema

algebra Company is BusinessState with

signatures:

 order(businessState,customer,itemID,natural) ;

 fulfill(businessState) businessState ;

 collect(businessState,customer) businessState ;

 restock(businessSate,itemID,natural) businessState ;

...

axioms:

 fulfill(currentState(newOrder(customer,itemID,desired)+Set<PurchaseOrder>,

 quantityOnHand(itemID,available)+Set<WareHouseItems>,

 Set<UnpaidInvoices>,cashonhand) ==

 currentState(Set<PurchaseOrder>,

 quantityOnHand(itemID,available-desired)+Set<WareHouseItems>,

 invoice(customer,desired*price)+Set<UnpaidInvoices>,

 cashonhand))

 if available>=desired ;

 collect(currentState(Set<PurchaseOrder>,

 Set<WareHouseItems>,

 invoice(customer,amount)+Set<UnpaidInvoices>,cashonhand),

 customer) ==

 currentState(Set<PurchaseOrder>,

 Set<WareHouseItems>,

 Set<UnpaidInvoices>,

 cashonhand+amount)) ;

...

An algebraic specification (Spectrum)
of business actions (vocabulary)

Meaning ==

Constraints

On Operations

Two Fundamental Flavors of Rules

Constraints: sets of conditions over (business state)

 which must always be true

Already have some these in basic vocabulary

• Data Model:

 The structure and meaning of the data (in a state) elements,

 and any constraints on those data elements

• State Model:

 The set of data describing an (business) entity

 including constraints on the state of the business

Can state business actions in term of pre- and post- action constraints

 Essence of “nonprocedural”

Procedures: reactions to new events

 to change business state in desired way

 To be useful, these reactions must honor business constraints

Send Invoice

Invoice

Valid?

Classic Flowchart (Procedural Rule)

Ship Part

Order Part Restock

Wait for

Purchase

Order

Wait for

Part

Restock

Update Cash

Mark Invoice

Paid

Wait for

Invoice

Payment

No

Wait for

Part in

Stock

Send Invoice

Invoice

Valid?

Classic Flowchart Simulation 1

Ship Part

Order Part Restock

Wait for

Purchase

Order

Wait for

Part

Restock

Update Cash

Mark Invoice

Paid

Wait for

Invoice

Payment

No

Wait for

Part in

Stock

Execution token

Send Invoice

Invoice

Valid?

Classic Flowchart Simulation 2

Ship Part

Order Part Restock

Wait for

Purchase

Order

Wait for

Part

Restock

Update Cash

Mark Invoice

Paid

Wait for

Invoice

Payment

No

Wait for

Part in

Stock

Send Invoice

Invoice

Valid?

Classic Flowchart Simulation 3

Ship Part

Order Part Restock

Wait for

Purchase

Order

Wait for

Part

Restock

Update Cash

Mark Invoice

Paid

Wait for

Invoice

Payment

No

Wait for

Part in

Stock

Send Invoice

Invoice

Valid?

Classic Flowchart Simulation 4

Ship Part

Order Part Restock

Wait for

Purchase

Order

Wait for

Part

Restock

Update Cash

Mark Invoice

Paid

Wait for

Invoice

Payment

No

Wait for

Part in

Stock

Send Invoice

Invoice

Valid?

Classic Flowchart Simulation 5

Ship Part

Order Part Restock

Wait for

Purchase

Order

Wait for

Part

Restock

Update Cash

Mark Invoice

Paid

Wait for

Invoice

Payment

No

Wait for

Part in

Stock

Send Invoice

Invoice

Valid?

Classic Flowchart Simulation 6

Ship Part

Order Part Restock

Wait for

Purchase

Order

Wait for

Part

Restock

Update Cash

Mark Invoice

Paid

Wait for

Invoice

Payment

No

Wait for

Part in

Stock

Send Invoice

Invoice

Valid?

Classic Flowchart Simulation 7

Ship Part

Order Part Restock

Wait for

Purchase

Order

Wait for

Part

Restock

Update Cash

Mark Invoice

Paid

Wait for

Invoice

Payment

No

Wait for

Part in

Stock

Send Invoice

Invoice

Valid?

Classic Flowchart Simulation 8

Ship Part

Order Part Restock

Wait for

Purchase

Order

Wait for

Part

Restock

Update Cash

Mark Invoice

Paid

Wait for

Invoice

Payment

No

Wait for

Part in

Stock

Send Invoice

Invoice

Valid?

Classic Flowchart Simulation 9

Ship Part

Order Part Restock

Wait for

Purchase

Order

Wait for

Part

Restock

Update Cash

Mark Invoice

Paid

Wait for

Invoice

Payment

No

Wait for

Part in

Stock

Send Invoice

Invoice

Valid?

Classic Flowchart Simulation 10

Ship Part

Order Part Restock

Wait for

Purchase

Order

Wait for

Part

Restock

Update Cash

Mark Invoice

Paid

Wait for

Invoice

Payment

No

Wait for

Part in

Stock

Send Invoice

Invoice

Valid?

Classic Flowchart Simulation 11

Ship Part

Order Part Restock

Wait for

Purchase

Order

Wait for

Part

Restock

Update Cash

Mark Invoice

Paid

Wait for

Invoice

Payment

No

Wait for

Part in

Stock

Send Invoice

Invoice

Valid?

Classic Flowchart Simulation 12

Ship Part

Order Part Restock

Wait for

Purchase

Order

Wait for

Part

Restock

Update Cash

Mark Invoice

Paid

Wait for

Invoice

Payment

No

Wait for

Part in

Stock

Actions are in terms of… what? (“Order Part Restock”)

 Better if uses abstract, well-defined business actions (fulfill)

Overconstrained Sequence of Events

 Why Wait for Invoice Payment

 then Wait for Part Restock?

 We need more abstract event sequencing

Synchronization is not handled well

 What does “wait for …” mean?

So why not use FlowCharts?

Classic Petri Net 1
Synchronization with Multiple Tokens

Place: A holder of zero or more (black) tokens

Token: Marker in place representing state-is-active

Outgoing Arc: Connection from an (input) Place to Transition

Incoming Arc: Connection from Transition to (Output) Place

Transition: An intermediary between places

 that consumes tokens from input places synchronously

 and generates a token in output places

Parts in

Warehouse

Purchase

Order

Invoices

Part Available

for Purchase

Shipments

Place

Transition

Token

Classic Petri Net 2
Synchronization with Multiple Tokens

Place: A holder of zero or more (black) tokens

Token: Marker in place representing state-is-active

Outgoing Arc: Connection from an (input) Place to Transition

Incoming Arc: Connection from Transition to (Output) Place

Transition: An intermediary between places

 that consumes tokens from input places synchronously

 and generates a token in output places

Parts in

Warehouse

Purchase

Order

Invoices

Part Available

for Purchase

Shipments

Place

Transition

Token

Classic Petri Net Simulation 1

Parts in

Warehouse

Purchase

Order Invoices

Part Available

for Purchase

Restock Part

Available

Shipments

Restock

Order

New Part

From Factory

Cash

Client

Need

Shipment

Expected

Classic Petri Net Simulation 2

Parts in

Warehouse

Purchase

Order Invoices

Part Available

for Purchase

Restock Part

Available

Shipments

Restock

Order

New Part

From Factory

Cash

Client

Need

Shipment

Expected

Classic Petri Net Simulation 3

Parts in

Warehouse

Purchase

Order Invoices

Part Available

for Purchase

Restock Part

Available

Shipments

Restock

Order

New Part

From Factory

Cash

Client

Need

Shipment

Expected

Classic Petri Net Simulation 4

Parts in

Warehouse

Purchase

Order Invoices

Part Available

for Purchase

Restock Part

Available

Shipments

Restock

Order

New Part

From Factory

Cash

Client

Need

Shipment

Expected

Classic Petri Net Simulation 5

Parts in

Warehouse

Purchase

Order Invoices

Part Available

for Purchase

Restock Part

Available

Shipments

Restock

Order

New Part

From Factory

Cash

Client

Need

Shipment

Expected

Classic Petri Net Simulation 6

Parts in

Warehouse

Purchase

Order Invoices

Part Available

for Purchase

Restock Part

Available

Shipments

Restock

Order

New Part

From Factory

Cash

Client

Need

Shipment

Expected

BPMN: A special kind of (classic) Petri Net

Company

Customer

Purchase

Order

Ship

Part

Send

Invoice

Order

Part

Restock

Request

Part from

WareHouse

Wait for

 Part
Wait for

 Payment

Wait for

Restock

Update

Cash

Send to

Warehouse

…

Invoice Part

BPMN Simulation 1

Company

Customer

Purchase

Order

Ship

Part

Send

Invoice

Order

Part

Restock

Request

Part from

WareHouse

Wait for

 Part
Wait for

 Payment

Wait for

Restock

Update

Cash

Send to

Warehouse

…

Invoice Part

BPMN Simulation 2

Company

Customer

Purchase

Order

Ship

Part

Send

Invoice

Order

Part

Restock

Request

Part from

WareHouse

Wait for

 Part
Wait for

 Payment

Wait for

Restock

Update

Cash

Send to

Warehouse

…

Invoice Part

BPMN Simulation 3

Company

Customer

Purchase

Order

Ship

Part

Send

Invoice

Order

Part

Restock

Request

Part from

WareHouse

Wait for

 Part
Wait for

 Payment

Wait for

Restock

Update

Cash

Send to

Warehouse

…

Invoice Part

BPMN Simulation 4

Company

Customer

Purchase

Order

Ship

Part

Send

Invoice

Order

Part

Restock

Request

Part from

WareHouse

Wait for

 Part
Wait for

 Payment

Wait for

Restock

Update

Cash

Send to

Warehouse

…

Invoice Part

BPMN Simulation 5

Company

Customer

Purchase

Order

Ship

Part

Send

Invoice

Order

Part

Restock

Request

Part from

WareHouse

Wait for

 Part
Wait for

 Payment

Wait for

Restock

Update

Cash

Send to

Warehouse

…

Invoice Part

BPMN Simulation 6

Company

Customer

Purchase

Order

Ship

Part

Send

Invoice

Order

Part

Restock

Request

Part from

WareHouse

Wait for

 Part
Wait for

 Payment

Wait for

Restock

Update

Cash

Send to

Warehouse

…

Invoice Part

BPMN Simulation 7

Company

Customer

Purchase

Order

Ship

Part

Send

Invoice

Order

Part

Restock

Request

Part from

WareHouse

Wait for

 Part
Wait for

 Payment

Wait for

Restock

Update

Cash

Send to

Warehouse

…

Invoice Part

BPMN Simulation 8

Company

Customer

Purchase

Order

Ship

Part

Send

Invoice

Order

Part

Restock

Request

Part from

WareHouse

Wait for

 Part
Wait for

 Payment

Wait for

Restock

Update

Cash

Send to

Warehouse

…

Invoice Part

BPMN Simulation 9

Company

Customer

Purchase

Order

Ship

Part

Send

Invoice

Order

Part

Restock

Request

Part from

WareHouse

Wait for

 Part
Wait for

 Payment

Wait for

Restock

Update

Cash

Send to

Warehouse

…

Invoice Part

BPMN Simulation 10

Company

Customer

Purchase

Order

Ship

Part

Send

Invoice

Order

Part

Restock

Request

Part from

WareHouse

Wait for

 Part
Wait for

 Payment

Wait for

Restock

Update

Cash

Send to

Warehouse

…

Invoice Part

Actions are in terms of… what? (“Order Part Restock”)

 Better if uses abstract, well-defined business actions (fulfill)

Data being exchanged isn’t clearly defined

 Better if uses abstract, well-defined business data (PurchaseOrder)

Synchronization often occurs with data transmission

 BPMN requires (active) event and (passive) data

 Better to combine synchronization signals with data

Weaknesses of BPMN?

Place: A holder of zero or more (colored) tokens

Token: Marker in place representing available event with data

Outgoing Arc: Connection from an (input) Place to Transition

Incoming Arc: Connection from Transition to (Output) Place

Transition: An intermediary between places

 that consumes tokens from input places synchronously

 and generates a token in output places

 Computes new data values to new tokens using business actions

Parts in

Warehouse

Purchase

Order

Invoices

Part Available

for Purchase

Shipments

Place

Transition

& Action

Token

“Colored” Petri Nets
(Timed, Hierarchical, …)

Token color represents

abstract business data

(Can use name

instead of color)

Part Available

for Purchase

Place: A holder of zero or more (colored) tokens

Token: Marker in place representing available event with data

Outgoing Arc: Connection from an (input) Place to Transition

Incoming Arc: Connection from Transition to (Output) Place

Transition: An intermediary between places

 that consumes tokens from input places synchronously

 and generates colored tokens in output places

 Computes new data values for new tokens using business actions

Parts in

Warehouse

Purchase

Order

Invoices

Part Available

for Purchase

Shipments

Place

Transition

Token

Colored Petri Nets
Simulation step

Associated

Computation

Place: A holder of zero or more (colored) tokens

Token: Marker in place representing available event with data

Outgoing Arc: Connection from an (input) Place to Transition

Incoming Arc: Connection from Transition to (Output) Place

Transition: An intermediary between places

 that consumes tokens from input places synchronously

 and generates colored tokens in output places

 Computes new data values for new colored tokens (business actions)

Parts in

Warehouse

Purchase

Order

Invoices

Part Available

for Purchase

Shipments

Place

Transition

Token

Colored Petri Nets
Slight Notation Change

Compute

invoice content

Action

This style of computation is called data flow

So… what specific information
 do you want from Business Rules?

There are many possible uses of BR across an organization.

• Narrowing to one focus enables simpler BR, but limits use.

• Widening focus necessitates more complex BR vocabulary

This creates tension in choice.

So how can you choose?

Consult hierarchy of BR types.

Two hierarchies of program models:
code and data

Timed,

 Colored Petri

Nets

Petri Nets

(BPMN)

Flowcharts/

Procedures

Call Graphs

Data Flow

Diagram

Decision Tables

IF-THEN rules

Computation

Constraint

Systems with

Time

Entity

Relationship

Diagrams

Class

 Diagrams

Record

Structures

Relational Data

Models

Typed Data

Blobs

Named data

blobs

Data

Algebraic

Specifications

Fixed Set

of Data types

Constraint

Systems

(Pre/Post)

Model and
Business Rule

Extraction
Using Pattern Matching

Model extraction using Pattern Matching

Goal:

 Extract models and business rules from legacy systems

Method:
1. BA/Programmer identify code idioms representing business actions

2. BA/Programmer define a pattern representing idiom

3. BA/Programmer may define other patterns for same idiom

4. Tool analyze source code to find data flows

5. Tool analyze pattern to find data flows

6. Tool matches pattern to source code using data flows as guide
7. Tool records idiom name as code abstraction

Benefits:
 Matched code fragments are instances of business actions

 Code variations equivalent to pattern are found

Not discussed: How to build business vocabulary or data models

What’s inside a Computer Program?

 A Colored Petri Net (“Data flow”)

int fibonacci(n)

{ unsigned int fl= 0, fh = 1, i;

 if (n <=1)

 fh = n;

 else

 for (i= 2; i<=n; i++) {

 int tmp = fh;

 fh =fl + fh;

 fl = tmp;

 }

 print ("Fib(%d) = %d\n", n, fh);

 return n;

}

Big example wouldn’t fit on football field…

Insight:

Maybe we can abstract away this detail

accumulate(fib#s)

(Analysis): Data Flow patterns:
Matching code with dataflows, not syntax

default base domain C~ISO9899c1990.

public data flow pattern

 classify_bank(bank_number:IDENTIFIER<~,

 bank_code:IDENTIFIER~>):statement_seq

 = "if (\bank_number > 10 & \bank_number <= 25)

 \bank_code = 3; // bank of ethel

 else

 \bank_code = 0; // unknown bank number

 ".

 Data flow match of idiom woven into code
Data flow pattern for idiom

 a “bank classification” idiom

Representing a business computation

COBOL tax computation Patterns
COMPUTE-TOTAL.

 MULTIPLY QUANTITY BY PRICE GIVING TOTAL-AMOUNT.

 IF TOTAL-AMOUNT > DISCOUNT-THRESHOLD

 MULTIPLY TOTAL-AMOUNT BY DISCOUNT-PERCENT

 GIVING DISCOUNT-AMOUNT

 DIVIDE 100 INTO DISCOUNT-AMOUNT

 SUBTRACT DISCOUNT-AMOUNT FROM TOTAL-AMOUNT.

 ADD ONE TO VAT-RATE GIVING TAX-ADJUSTMENT.

 MULTIPLY TAX-ADJUSTMENT INTO TOTAL-AMOUNT.

 DISPLAY COMPANY-NAME.

 DISPLAY "Total: ", TOTAL-AMOUNT.

data flow pattern ComputeTax_by_adding(TaxRate:Constant,

 Total:IDENTIFIER)

 :StatementSequence

 Temp:IDENTIFIER

 “MULTIPLY \Total BY \TaxRate GIVING \Temp.

 ADD \Temp TO \Total”

 if Value(TaxRate)>0.0 and Value(TaxRate)<1.0

data flow pattern ComputeTax_by_multiplying(TaxRate:Constant,

 Total:IDENTIFIER)

 :StatementSequence

 “Compute \Total = 1.0 + \TaxRate”

 if Value(TaxRate)>0.0 and Value(TaxRate)<1.0;

data flow pattern ComputeTax(TaxRate:Constant,

 Total:IDENTIFIER):

 <HowTaxed: TaxStyle>:

 StatementSequence

 case HowTaxed

 when `Added`

 ComputeTax_by_adding(TaxRate,Total)

 when ‘Multiplied’

 ComputeTax_by_multiplying(TaxRate,Total)

 esac;

define TaxStyle = { `Added`, ‘Multiplied’ }

COMPUTE-INVOICE.

 MULTIPLY AMOUNT BY VAT-RATE GIVING TAX.

 Compute INSURANCE = INSURANCE_RATE * AMOUNT.

 ADD TAX TO AMOUNT.

 ADD INSURANCE TO AMOUNT GIVING INVOICE_TOTAL.

Model Based Migration

(Dow Chemical)

Modern

 Controller

Code

(ST)

TO BE

AS-IS

if(ST4)

then Timer(T42,4sec);

if(ST2)

then Timer(t41,4sec);

ST1X :=

 (ST1 ! ST4 & T42.dn)

 & (~ST1 ! ~ S1 ~ S2)

 ! first_scan);

ST2X :=

 (ST2 ! ST1 & S1 & ~S2)

 & (~ST2 ! T41.DN);

ST3X :=

 (ST3 ! ST2 & T41.DN)

 & (~ST3 ! S1 ! ~S2)

ST4X :=

 (ST4 ! ST3 & ~S1 & S2)

 & (~ST4 | T42.DN);

DMS

Grammar

Rules

Parse Analyze

Rule

Compiler
Transform Format

Target Language

Formatting Rules

Program

Understanding

Rules

Rewrite Rules

DMS

Grammar

Rules

Parse Analyze

Rule

Compiler
Transform Format

Target Language

Formatting Rules

Program

Understanding

Rules

Rewrite Rules

Description of RLL

Description of Model

Translation

(Abstraction)

Rules from RLL to

DCS concepts

DMS

Grammar

Rules

Parse Analyze

Rule

Compiler
Transform Format

Target Language

Formatting Rules

Program

Understanding

Rules

Rewrite Rules

DMS

Grammar

Rules

Parse Analyze

Rule

Compiler
Transform Format

Target Language

Formatting Rules

Program

Understanding

Rules

Rewrite Rules

DCS Model:

Process Control

Concepts applied

to specific factory

Description of Model

Description of ST

Translation Rules

from Model to ST

Guidance Filter

Safe?

Control

Temp

Heat

Alarm

Summary

Wide variety of “business rule” schemes

 are unified by Colored Petri Net models

 augmented by formal data models

Two major components:
Data and business rule computation models

Process/ data flow with synchronization

Differs from BPMN:
How it models data transfers as part of synchronization

How it compute business actions based on formal data model

Key to capturing business rules from code
By recognizing dataflow idioms as business abstractions

Major success in migrating must-not-fail factory

Technology at early-adopter stage
www.semanticdesigns.com

Automated Extraction of Business

Rules and Models from Code

Abstract

Everybody talks about "business rules", and how to extract them from code. The definitions vary wildly, and the procedure to extract

them are largely informal. This confuses everybody about the nature of business rules and what exactly happens as they are

extracted.

This talk will be a synthesis of ideas from the program analysis, reverse engineering, model extraction and business rules extraction

community. We will discuss the concept of abstraction as a unifying principle that ties these ideas together in a coherent framework,

showing how decision tables, BPEL-style notations, models and domain-specific languages are all variations on a theme.

We will discuss the kind of technology that is required to enable the analysis of code by tracing information flows from system inputs

through code to system outputs, and reverse engineering from code idioms with interactive guidance of the process by a business

rule analyst. As a case study, we will discuss how we were able to extract reliable models of a factory control process from

extremely low level code for Dow Chemical industrial plant controllers using pattern matching technology to recognize common code

idioms and design choices. Finally, we will discuss how this technology is likely to evolve for use in the broader business rule

community.

Learning Objective 1 * Learning Objective 2 * Learning Objective 3 *

What are abstractions, and how are they related

to business rules.
Show how computer code implements abstractions

Show how information flow and pattern matching

can be used to support extraction of business rules

and abstraction

Abstract

Presentation Level

Advanced

Kind of Presentation

1-hour presentation

Select a General Focus

? The Evolving Analysis and Design Landscape

? Leveraging Technology

? Fast Forward

Select a Special Focus

? Business Rules and Decisions

Additional focus or positioning of content

Keyword 1 Keyword 2

abstraction information flows

design recovery automation

pattern matching

How do you plan on conducting the session?

Traditional presentation

http://www.buildingbusinesscapability.com/2016/themes/#eadl
http://www.buildingbusinesscapability.com/2016/themes/#lt
http://www.buildingbusinesscapability.com/2016/themes/#ff
http://www.businessrulesforum.com/

Speaker Biography

Ira Baxter, Ph.D., has been building system software since 1969. After founding a

microprocessor software house in the 1970s, he returned to graduate school at UC Irvine

to study reuse of knowledge supporting software maintenance and evolution. On

completing his Ph.D. in 1990, he joined Schlumberger as research scientist automating

the generation of supercomputer programs for oil field exploration. In 1995, he founded

Semantic Designs, where he has been architect/implementer of the Design Maintenance

System(R), providing automated program analysis and transformation to large-scale

legacy systems.

He has been project lead on a variety of massive code migration and re-architecting

projects, including work with Dow Chemical to automate the extraction of models from

factory control code. Dr. Baxter has been active in Software Engineering and

Maintenance and other conferences since 1983, including co-chairing of the International

Conference on Software Maintenance.

Thank You

Contact

Randal Matthias

Business Development Manager

Rmatthias@semanticdesigns.com

1-512-250-1018 x172

www.SemanticDesigns.com

mailto:Rmatthias@semanticdesigns.com

